Politiker erklären jetzt, dass ihnen die Fukushima-Katastrophe die Größe des Restrisikos deutscher Kernkraftwerke klar gemacht hätte. Welch ein Unsinn. Das ist nur dasjenige Risiko, das bei einem richtig ausgelegten, bestens konstruierten und auch später sicherheitstechnisch nachgerüsteten Kraftwerk am Ende übrig bleibt. Bei den japanischen Reaktoren war das bei Weitem nicht der Fall.

Es gab dort 6 schwere Fehler

Fehler 1

Der Reaktor war auf ein stärkstes Erdbeben von 8,4 ausgelegt – wie es aber schon 1933 auftrat. Es gab keine Sicherheitsreserve darüber – und so übertraf das Beben vom 11.März  die Belastungsgrenze des Reaktors um 25%.

Fehler Nr. 2

war die krasse Mißachtung der Höhe eines Tsunamis, denn im Mittel alle 30 Jahre gab es Tsunamis mit Wellenhöhen über 10 m, oft weit darüber.  Der Betonwall am Meer hatte 5,7 m – dazu kamen 4,3 m vom höher gelegenen Kraftwerk. Die reale Tsunamiwelle hatte aber 14 m. Damit verbunden war

Fehler Nr. 3:

Die Diesel für die Notkühlung befanden sich im Untergeschoß und dieser Raum war auch nicht gegen Hochwasser abgedichtet. Die Diesel soffen ab, die Kühlung fiel aus.

Fehler Nr. 4

war die Unterlassung einer Nachrüstung der zu schwachen Druckentlastungs-Leitungen in der US-Konstruktion. Diese können im Falle einer Kernaufheizung durch den Druck von Dampf und Wasserstoff Lecks bekommen, wodurch alles in das Reaktorgebäude gelangen kann. In den USA wurde das erkannt und die Leitungen verstärkt – in Japan nicht.

Fehler Nr.5:

Weil diese Druckentlastung keine Filter enthielt, konnten radioaktive Aerosole und Partikel entweichen und nach außen gelangen. Deutsche Reaktoren haben diese Filter, die 99,9% zurück halten.

Fehler Nr. 6:

Der im Reaktorgebäude angesammelte Wasserstoff – siehe Nr.5 – konnte explodieren, weil die japanischen Reaktoren im Gegensatz zu unseren nicht über Rekombinatoren verfügen, die Wasserstoff zu Wasser umwandeln. So kam es zu den Explosionen und zur Verbreitung radioaktiver Substanzen. Deshalb lag das tatsächliche Risiko der Fukushima-Reaktoren um das Zig-Tausendfache über dem theoretischen Restrisiko.

Die in Japan unbegreiflicherweise unterlassenen Maßnahmen sind in deutschen KKW lange verwirklicht. Keinen dieser Fehler und Unterlassungen hätte unsere Reaktorsicherheits-Kommission RSK durchgehen lassen – die übrigens von 2002 bis 2006 von Michael Sailer, Mitglied der Geschäftsführung des Öko-Instituts Darmstadt,  geleitet wurde, der heute noch RSK-Mitglied ist.

Dr.-Ing. Günter Keil, Sankt Augustin 18.5.2011

Update: aus 

Grüne surfen auf dem Tsunami an die Macht

…..Niemand hat sich gefragt, warum das Kraftwerk Fukushima nach dem Erdbeben genauso aussah wie vor dem Erdbeben, abgesehen von der geborstenen Betonhülle des Reaktorbaus, welche erst nachträglich durch eine Wasserstoffexplosion aufbrach. Eigentlich hätten die Gebäude doch in Mitleidenschaft gezogen werden müssen bei Horizontalbeschleunigungen von bis zu 550 cm/s2, die auf dem Kernkraftwerksgelände in Ost-West-Richtung gemessen wurden. Die Erdbebensicherheit der Konstruktion hatte seine Aufgabe erfüllt. Alle Sicherheitseinrichtungen taten planmäßig ihren Dienst. Auch die Zerstörung der örtlichen Stromversorgung konnte dem Kraftwerk nichts anhaben, dann aber passierte es. Etwa eine Stunde nach dem verheerenden Beben erreichte ein an dieser Stelle ca. 14 m hoher Tsunami die Küste. Mühelos überwand er die 5,7 m hohe Steinbarriere im Meer, die zweifellos zu niedrig ausgelegt war und spülte ins Kraftwerk hinein bis in die Höhe der Notstromdiesel, die daraufhin ihren Dienst versagten. Im Folgenden konnte die Kühlung nur noch für eine kurze Zeit aufrechterhalten werden, der Rest ist bekannt…

Weiterführender Link zu den Ursachen der Fukushima Havarie hier

Fragen zu KKW der IV Generation: Erläuterungen von Konstantin Foskolos; Deputy Head Nuclear Energy and Safety Research Department Paul Scherrer Institut*

http://www.psi.ch/

Sehr geehrter Herr XXXXXXX Stefan Hirschberg leitete Ihre Anfrage an mich weiter. Hier ein Paar kurze Antworten zu Ihren Fragen: 

F. Wenn ich es richtig verstanden habe, wird bei der heutigen Reaktorgeneration (III) das Energiepotential von Uran nur zu einem verschwindend geringen Teil genutzt. Zahlen zwischen 1 und 3% werden genannt. Stimmt das, und wenn ja, woran liegt das? Was geschieht mit den restlichen ca. 97%? Sind die allesamt "nuklearer" Abfall?

A. Ja, das stimmt. Dies liegt daran, dass in Leichtwasserreaktoren (LWR, welche die Mehrheit der heute in Betrieb stehenden Anlagen ausmachen) die Kernspaltung durch den Aufprall von langsamen („thermischen“) Neutronen auf die spaltbaren Kerne verursacht wird. Das Uran in der Natur besteht aus zwei Isotopen, U-235 (0.7%) und U-238 (99.3%), wovon nur das erste mit thermischen Neutronen gespalten werden kann. Über die Anreicherung wird der Anteil von U-235 auf bis zu 5% erhöht, und dies gelangt in den Reaktor. Allerdings wird der Brennstoff herausgenommen, bevor das U-235 völlig gespalten wird; der „abgebrannte“ Brennstoff enthält noch 1-2% U-235. Der Rest besteht hauptsächlich aus „Ballast“, d.h. U-238. Allerdings wird ein kleiner Teil des U-238 über den Einfang von Neutronen zu Plutonium verwandelt, welches wiederum mit thermischen Neutronen spaltbar ist. 

F. Was geschieht bei der "Wiederaufbereitung"? Wird daraus wieder verwendbares Reaktormaterial gewonnen?

A. Bei der Wiederaufarbeitung wird der abgebrannte Brennstoff in Salpetersäure aufgelöst und seine verschiedenen Bestandteile mittels chemischer Bindestoffe separiert. So gewinnt man separat Uran (wie gesagt noch 1-2% angereichert), Plutonium, und ein Gemisch aus Spaltprodukten und den sog. „höheren Actiniden“ (Americium, Curium)“. Dieses Gemisch bildet den eigentlichen Abfall, der nach der Abtrennung mit Sand vermischt, geschmolzen und verglast wird. Die daraus entstehenden (hochradioaktiven) Glaszylinder werden in Stahlbehältern eingepackt und mit Castor-Behältern von der Wiederaufbereitungsanlage zur Zwischen- und Endlagerung geführt. Wiederaufarbeitungsanlagen gibt es in Frankreich (La Hague), Grossbritannien (Sellafield), Japan (Rokkasho) und Russlad (Mayak). Findet keine Wiederaufarbeitung statt, so transportieren die Castor-Behälter ganze Brennelemente vom jeweiligen Reaktor zum Zwischenlager und später zum Endlager. 

F. Wenn ja, was geschieht damit? Nach Deutschland kommen doch nur die Castor Behälter zur "Endlagerung" zurück.

A. Das abgetrennte Uran und Plutonium sind wertvolle Rohstoffe, die wieder in den Reaktor eingesetzt werden können. Allerdings waren bis vor kurzem die Uranpreise auf dem Spotmarkt so tief, dass es sich nicht lohnte, rezykliertes Material einzusetzen. Die sich abzeichnende Wiedergeburt der Kernenergie mit weltweit erhöhtem Bedarf an spaltbaren Materialien und die steigenden Uranpreise werden vermutlich zu einem nachhaltigeren Umgang mit dieser Ressource und zur Nutzung auch von rezykliertem Material führen. Allerdings besteht mancherorts entweder eine politische Verhinderung für Wiederaufarbeitung (D: Verbot, CH: Moratorium), andere Länder haben bewusst davon abgesehen (USA), in der Hoffnung damit das Proliferationsrisiko zu reduzieren. Tatsache ist, dass es heute keine technischen Massnahmen gibt, welche einen Missbrauch des abgetrennten Plutoniums deterministisch ausschliessen können – man nutzt internationale Kontrollen und prozedurale Massnahmen. Tatsache ist auch, dass solcher „Missbrauch“ bisher nur von Staaten, aber nie von sonstigen Gruppierungen ausgeübt wurde. 

F. Wie hoch wäre die "Ausbeute" bei der VI. Generation von Kernreaktoren?

A. Reaktoren der Generation IV arbeiten mehrheitlich mit schnellen Neutronen, welche alle spaltbaren Isotope spalten können. Damit kann theoretisch der gesamte energetische Inhalt des Urans genutzt, und auch das Plutonium und die höheren Actiniden gespalten werden. Nach mehrfacher Wiederaufarbeitung und Rezyklierung blieben somit theoretisch nur Spaltprodukte übrig, die endgelagert werden müssten; allerdings haben diese viel kürzere Halbwertszeiten und zerfallen somit viel schneller zu nicht-radioaktiven Isotopen. Damit lassen sich die erforderlichen Endlagerzeiten massiv verkürzen, von heute einigen 100000 Jahren auf einige 100 Jahre. Gegenüber LWR steigt die Nutzung von Uran bei schnellen Reaktoren um mindestens einen Faktor 50 – was auch die Frage der Ressourcenverfügbarkeit wesentlich entschärft. 

F. Worin liegt das "Neue" von "Transmutation" im Vergleich zur Wiederaufbereitung?

A. Transmutation ist die Verwandlung von einem Isotop in ein anderes. Allgemein wird damit die Umwandlung durch Spaltung von höheren Actiniden mit sehr langen Halbwertszeiten in wesentlich kurzlebigere Spaltprodukte gemeint; solche Spaltungen finden in Reaktoren mit schnellen Neutronen statt, also Reaktoren der Generation IV. Wiederaufarbeitung ist ein der Transmutation vorgelagerter Prozess, um die zu rezyklierenden und zu transmutierenden Isotope von den Spaltprodukten zu separieren. Parallel zur Entwicklung neuer Reaktoren der Generation IV werden fortgeschrittene Wiederaufarbeitungsmethoden entwickelt, welche kompakter und effizienter sind und weniger Abfall produzieren; es wäre möglich, solche kleine Wiederaufarbeitungsanlagen mit dem Reaktor auf dem gleichen Standort zu kombinieren und somit die lästigen Castor-Transporte massiv zu reduzieren.

Ich hoffe damit Ihre Fragen im Wesentlichen beantwortet zu haben. Sie finden eingehendere Information zu Reaktoren der Generation IV unter http://gif.inel.gov/roadmap/ und zur Kerntechnik allgemein im ausgezeichneten Lexikon zur Kernenergie des Forschungszentrums Karlsruhe: http://iwrwww1.fzk.de/kernenergielexikon/ .

Freundliche Grüsse,
 
Konstantin Foskolos
Deputy Head
Nuclear Energy and Safety Research Department
Paul Scherrer Institut http://www.psi.ch/

Das Paul Scherer Institut ist eine international anerkannte private Forschungseinrichtung in der Schweiz. Es arbeitet eng mit dem Gen IV Forum GIF zusammen:

The Generation IV International Forum (GIF) is a cooperative international endeavor organized to carry out the research and development (R&D) needed to establish the feasibility and performance capabilities of the next generation nuclear energy systems.

Zum Transmutationsverfahren der Vermeidung und weitgehenden Unschädlichkeitsmachung des Kernbrennstoff-Abfalls s. auch die EIKE-News von Pressesprecher Prof. Dr. Horst-Joachim Lüdecke hier

image_pdfBeitrag als PDF speichernimage_printBeitrag drucken