Teil 1 – Was zeichnet die Luftmassen Europas aus, wie erkennt man sie?

FREUER hat in seinem Beitrag „Luftmassen – was heißt das?“ (hier) schon die wesentlichen Grundlagen der Luftmassenbestimmung, deren Definition und Eigenschaften genannt; es ist sehr empfehlenswert, diesen vor den folgenden, vertiefenden Ausführungen zu lesen. Die Herkunft einer Luftmasse wird unter anderem mit Trajektorien bestimmt. Als Trajektorie (Luftbahn) bezeichnet man die Bahn, die ein einzeln betrachtetes Luftpartikel in einem gewissen Zeitraum durchläuft. Das bedeutet, dass die Trajektorie alle Orte verbindet, die ein Teilchen während seiner Bewegung einmal berührt hat. Durch die Berechnung von Trajektorien lässt sich u.a. die Herkunft und die weitere Verfrachtung von Luftverunreinigungen bestimmen. Schematisch sei das an zwei Grafiken für die typischen Wege warmer und kalter Luftmassen nach Mitteleuropa gezeigt:

Abbildungen 1a und 1b: In der oberen Abbildung (1a) erkennt man die Herkunftsgebiete der in Europa vorkommenden warmen Luftmassen sowie deren typische Wege und Umwandlungen im Herbst. In 1b (unten) Selbiges für kalte Luftmassen im Winter. Die Nomenklatur der Luftmassen wird an späterer Stelle in einer Tabelle erläutert. Es können nur typische Fälle gezeigt werden; Einzelfälle verlaufen mitunter anders. So kann mP auch aus Nordosten über die Ostsee nach Deutschland gelangen, und cS kann bei starkem Föhn auch am Alpennordrand oder bei sehr starkem Absinken in einem Hochdruckgebiet mitunter sogar über Norddeutschland entstehen. Bildquelle beider Abbildungen (1)

Wesentliche Luftmasseneigenschaften sind Temperatur, Wasserdampfgehalt, Verunreinigungen (Staub, Pollen, Salzkristalle, Schwefel- und Stickoxide), Durchsichtigkeit, Wolkenbild, Intensität des Himmelsblaus, Niederschlagsverhalten und vertikale Schichtung. In der Bioklimatologie ist die Schwüle, eine Kombination aus hoher Lufttemperatur und hohem Wasserdampfgehalt, ein gängiger Begriff:

Abbildung 2: Als ein Grenzwert, ab dem Schwüle beginnt, wird ein Taupunkt von 16 °C angenommen, was unter Normalbedingungen einer absoluten Luftfeuchtigkeit von 13,5 g Wasserdampf pro Kubikmeter Luft entspricht. Bedeutsam ist die Schwüle in unseren Breiten etwa von April bis Oktober. Bildquelle hr-Fernsehen.de, Sendung vom 20.07.2020

Zur Klassifikation der Luftmassen nach ihrer Temperatur und ihrer pseudopotentiellen Temperatur wurden vom Meteorologischen Institut der FU Berlin Tabellen entwickelt; hier sei das für das 850 hPa-Niveau im Winterhalbjahr gezeigt (entspricht in etwa 1500 Metern Höhe):

Abbildung 3: Tabelle zur Luftmassenbestimmung im 850-hPa-Niveau (Radiosonde) für das Winterhalbjahr. Schwarz Lufttemperatur in dieser Höhe, darunter blau die pseudopotentielle Temperatur. Fett markiert sind die Mittelwerte des Intervalls für die jeweilige Luftmasse. Je südlicher die Herkunft der Luftmasse, desto höher sind die Werte. Bildquelle (1)

Auch der Staubgehalt variiert je nach Luftmasse stark:

Abbildung 4: Staubgehalte einiger Luftmassen in Mikrogramm je Kubikmeter Luft. 1 Mikrogramm (μg) = 1 Millionstel Gramm = 10−6 g. Nach PELZ, Bildquelle (2)

Seit den 1980er Jahren nahm die Staubbelastung der Luft stark ab, was mit einer zunehmenden Sichtweite einherging:

Abbildungen 5a und 5b: Nach dem Höhepunkt der Staubbelastung um 1970 nahm diese in Berlin-Dahlem stark ab; Jahresmittel in Mikrogramm je m³ Luft (oben, 5a). Nach 1970 stieg am selben Ort die Sichtweite in Km (Jahresmittel) stark an; besonders ab dem Ende der 1980er Jahre (unten, 5b). Leider enden diese Beobachtungen in den 1990er Jahren; doch dürften seitdem der Staubgehalt noch weiter ab- und die Sichtweite weiter zugenommen haben. Bildquellen (3)

Das Ganze erinnert an den „Klimasprung“ Ende der 1980er/Anfang der 1990er Jahre mit mehr und intensiverer Besonnung; worauf im Teil 2 noch näher eingegangen wird. Luftmassen können labil oder stabil geschichtet sein. Ersteres begünstigt die Durchmischung der Luft (Thermik) und kann bei genügend Wasserdampfgehalt zu Schauern und Gewittern führen; Letzteres geht oft mit einer Temperaturzunahme nach oben und Flaute am Boden einher; was sich nicht selten an Dunst, Nebel und Hochnebel erkennen lässt. Im Winter kann diese stabile Schichtung in Bodennähe eine ganz andere Luftmasse vortäuschen, als reell vorhanden; das ist bei der Luftmassenbestimmung unbedingt zu beachten:

Abbildung 6: Am Spätwintermorgen des 27. Februars 1948 herrschten in Thüringen enorme, höhenbedingte Temperaturunterschiede durch Inversion. Mit „+“ sind alle Gebiete über minus 6, mit „–„ solche unter minus 12°C gekennzeichnet. Während auf dem Rennsteig (Oberhof) nur etwa minus 4°C gemessen wurden, waren es in der Senke bei Arnstadt unter minus 20°C – das ist eine Temperaturdifferenz von mehr als 16 Kelvin auf kaum mehr als 600 Meter Höhendifferenz; räumlich sind beide Orte kaum 20 Km Luftlinie voneinander entfernt. Das Temperaturminimum von unter minus 20°C würde der Luftmasse cA entsprechen – aber es entstand nur durch nächtliche Ausstrahlung bei klarem Himmel in einer kontinentalen Subpolarluft und wurde bald von der Vorfrühlingssonne weggeheizt – nachmittags herrschte in Arnstadt leichtes Tauwetter. Bildquelle (4), ergänzt.

Dieses Einzelbeispiel verdeutlicht die Schwierigkeit, jeder Luftmasse in der Grundschicht, in welcher wir ja nun mal leben und auch die DWD-Temperaturen für die „normalen“ Wetterberichte gemessen werden, einen Temperaturbereich zuzuweisen. Denn Sonnenscheindauer, Exposition, Hanglage, Oberflächenbeschaffenheit, Bewuchs oder Bebauung beeinflussen die bodennahen Temperaturverhältnisse stark. Hinzu kommen die Jahreszeiten; manche Luftmassen zeigen im Winter ein gänzlich anderes Temperaturverhalten, als im Sommer. Außerdem verfälschen Stau und Föhn die Luftmasseneigenschaften oft stark; Näheres unter (6) und (7).

Abbildungen 7a und b: Temperaturintervalle der Luftassen in den beiden Hauptjahreszeiten Winter (7a, oben) und Sommer (7b, unten) nach den Erfahrungen des Autors. Die großen Variationen resultieren im Winter vor allem aus den unterschiedlichen nächtlichen Bewölkungsverhältnissen (je klarer, desto kälter!) und den unterschiedlichen Wegen der Luftmassen nach Mitteleuropa; im Sommer kommt noch die Sonnenscheindauer hinzu (je sonniger, desto wärmer!). Auf die noch viel komplizierteren Übergangsjahreszeiten kann hier nicht eingegangen werden.

So kann die Luftmasse mP an einem windigen, trüben, regnerischen Sommertag nur Temperaturmaxima von 10 bis kaum 15°C (Flachland) erreichen; während bei voller Sonne und schwachem Wind angenehme 20 bis 23°C, ganz selten sogar fast 25°C, möglich sind. Und in klaren, windstillen Winternächten kann sich cP über einer Schneedecke auf unter minus 20°C abkühlen, während in trüben, windigen Nächten nur Werte um oder etwas unter minus 5°C möglich sind. Die folgende Tabelle zeigt weitere, wesentliche Luftmassen-Merkmale:

Abschließend sollen noch einige Fotos zur visuellen Veranschaulichung der Luftmasseneigenschaften gezeigt werden. Besonders alle Gläubigen der CO2-Klimaerwärmung sollten diese genau betrachten. Denn sie zeigen die WAHREN Beeinflusser unseres Klimas – Wolken und feste Luftbeimengungen.

Arktische Meeresluft (mA) mit kräftiger Quellbewölkung, guter Fernsicht und Graupelschauer, der als Fallstreifen sichtbar wird. Foto: Stefan Kämpfe

Arktikluft (xA) verursacht mitunter noch spät im Frühjahr kräftige Schneeschauer. Foto: Stefan Kämpfe

Kontinentale Subpolarluft (cP) unter Hochdruckeinfluss. Nach gefrierendem Nebel mäßiges Himmelsblau und mäßige Fernsicht. Foto: Stefan Kämpfe

Maritime Subpolarluft (mP) bei leichtem Hochdruckeinfluss. Foto: Stefan Kämpfe

Subpolarluft (xP) unter Hochdruckeinfluss. Meist gute Fernsicht bei ganz schwachem Dunst und mäßiger Quellbewölkung. Foto: Stefan Kämpfe

Kontinental gealterte Subpolarluft (cPs) unter Hochdruckeinfluss. In dieser im Hochsommer extrem trockenen Luftmasse entwickeln sich bei kräftigem Himmelsblau trotz guter Thermik oft nur spärliche Quellwolken, meist sehr gute Fernsicht. Foto: Stefan Kämpfe

Gealterte Subpolarluft (xPs) unter Hochdruckeinfluss. Diese oft aus mP über Mitteleuropa entstehende Luftmasse ist häufig etwas dunstig und weist fast stets Quellbewölkung auf, hier Cumulus fractus. Nicht selten wirkt die Lichtstimmung etwas kraftlos und bleiern; Fernaufnahmen gelingen nur selten; doch kann xPs mitunter auch sehr klar und mit intensivem Himmelsblau auftreten. Foto: Stefan Kämpfe

Erwärmte maritime Subpolarluft (mPs) unter Zwischenhocheinfluss. Mehr oder weniger kräftige Schichthaufenwolken bei oft guter Fernsicht und kräftigem Himmelsblau sind typisch. Da die Erwärmung dieser Luftmasse von unten erfolgt, weist sie in der Regel sehr starke vertikale Temperaturgradienten auf, was zu jeder Jahreszeit zu häufigen Schauern und Gewittern in dieser Luftmasse führt. Foto: Stefan Kämpfe

Kontinental gealterte Warmluft (cSp) im Herbst unter Hochdruckeinfluss. Morgendliche, meist flache Dunst- und Nebelfelder verschwinden auch in der kälteren Jahreszeit abseits der Flusstäler stets tagsüber; dann kann in dieser trockenen, fast immer sonnigen Luftmasse eine mitunter gute Fernsicht herrschen. Foto: Stefan Kämpfe

Warmluft (xSp) in einem Warmsektor mit Lenticularis-Wolken bei leichtem Föhn. Foto: Stefan Kämpfe

Kontinentale Subtropikluft (cS) unter Hochdruckeinfluss bei schwachem Föhn. Relativ gute Fernsicht und mäßiges Himmelsblau; diese Luftmasse kann öfters völlig wolkenlos sein. Foto: Stefan Kämpfe

Subtropikluft (xS) in einem Warmsektor. Mehr oder weniger dichte Cirrus-Felder, oft durch den Luftverkehr verstärkt, dazu Altocumuli bei deutlichem Ferndunst. Foto: Stefan Kämpfe

Subtropische Meeresluft (mS) unter schwachem Hochdruckeinfluss. Die meist tiefen Schicht- und Schichthaufenwolken lockern selten einmal auf; aber gerade im Winterhalbjahr herrscht eine gute Fernsicht. Foto: Stefan Kämpfe

Quellennachweis und weiterführende Literatur (nicht im Internet verfügbar)

  1. Geb, M.: Klimatologische Grundlagen der Luftmassenbestimmung in Mitteleuropa. Beilage SO 7/81 zur Berliner Wetterkarte des Instituts für Meteorologie der Freien Universität Berlin, 1981
  2. Pelz, J.: Luftmassen und Luftbeimengungen in Berlin-Dahlem. Beilage SO 7/94 zur Berliner Wetterkarte des Instituts für Meteorologie der Freien Universität Berlin, 1994
  3. Pelz, J.: Das Zeitverhalten des Schwebstaubes und der Niederschlagsbeimengungen in Berlin-Dahlem. Beilage SO 4/93 zur Berliner Wetterkarte des Instituts für Meteorologie der Freien Universität Berlin, 1993
  4. Koch, H. G.: Wetterheimatkunde von Thüringen. Jena 1953, Gustav-Fischer-Verlag
  5. Kämpfe, S.: Die Horizontalsichtweite – Anmerkungen zu einer interessanten meteorologischen Größe. Beilage Nr. 53/1999 zur Wetterkarte des Deutschen Wetterdienstes (Amtsblatt)
  6. Kämpfe, S.: Stau und Föhn in Thüringen. Beilage Nr. 25/1998 zur Wetterkarte des Deutschen Wetterdienstes (Amtsblatt)
  7. Kämpfe, S.: Nebel in Thüringen. Beilage Nr. 179/1997 zur Wetterkarte des Deutschen Wetterdienstes (Amtsblatt)