CO2 ist für sichtbares Licht durchlässig und somit unsichtbar. Es absorbiert in bestimmten Frequenzbereichen Infrarotstrahlung (IR), trägt daher zum sogenannten Treibhauseffekt bei und wird infolgedessen als „Treibhausgas“ bezeichnet. Aus physikalischen Gründen müssen Treibhausgasmoleküle aus mindestens drei Atomen bestehen. CO2 ist solch ein Molekül. Es ist linear, die beiden Sauerstoffatome und das Kohlenstoffatom liegen auf einer Linie. CO2 ist kein Dipol. Bei Stößen oder Infrarotabsorption schwingt aber das CO2-Molekül, wobei „temporäre“ Dipole entstehen.

Die Eigenschaften der wichtigsten Treibhausgase wurden bereits in Tabelle 1 von Teil 1 gezeigt. Die Treibhauswirkung eines Gases ergibt sich aus seiner Konzentration in der Atmosphäre und der Stärke seiner IR-Absorption. Nur Wasserdampf, CO2, Ozon und CH4 sind maßgebende Treibhausgase. Den Löwenanteil des Treibhauseffekts verursacht der Wasserdampf. Der „Treibhauseffekt“ ist einerseits ein einfacher, zugleich aber auch ein extrem komplexer Mechanismus.

Komplex, weil Details und genaue Stärke, insbesondere was den Einfluss des menschgemachten CO2 betrifft, kaum zugänglich sind. Nun die Erklärung in zwei Stufen, je nach Geschmack und Vorkenntnis des Lesers.

In der einfachsten Erklärung stellen wir uns als Analogie eine wärmende Bettdecke vor. Alle Treibhausgase zusammen vertreten die Bettdecke. Leser mit technisch/physikalischen Kenntnissen werden hier zu Recht protestieren. Die Wärmewirkung der Bettdecke erfolgt durch Konvektionsverhinderung, denn die vom Körper erwärmte Luft kann nicht entweichen. Nicht zuletzt aus diesem Grunde wärmt auch Winterkleidung (Wärmestau). Aus diesem Bild stammt aber tatsächlich die etwas unglückliche Bezeichnung „Treibhauseffekt“. Ein Gärtnertreibhaus oder ein mit geschlossenen Scheiben in der Sonne stehendes Auto erwärmen sich im Inneren, weil Sonneneinstrahlung den Innenboden und die Innenwände erwärmt. Die durch Wärmeleitung im Treibhaus oder Auto erwärmte Luft kann nicht entweichen – dies ist der Treibhauseffekt eines Gärtnertreibhauses.

Die Bezeichnung „Treibhauseffekt“ ist natürlich schief, weil die Atmosphäre keine physischen Begrenzungen nach oben aufweist. Daher nun eine detailliertere, aber immer noch anschauliche Erklärung: Die kurzwellige Sonneneinstrahlung durchquert praktisch ungehindert die Atmosphäre und erwärmt das Wasser der Ozeane und den Erdboden. Die Ozeane und der erwärmte Erdboden geben ihre Wärme durch Kontaktleitung an die angrenzende Atmosphäre ab und strahlen zusätzlich Wärme als Infrarot ab. Die Treibhausgase in der Atmosphäre, welche die kurzwellige Sonnenstrahlung noch durchließen, absorbieren dagegen zu Teilen (Linienspektren) das langwellige Infrarot und strahlen diese Energie in den ihnen eigenen Linienspektren wieder ab. Der zum Erdboden gerichtete Teil dieser Abstrahlung wird als „Gegenstrahlung“ bezeichnet.

Nun kommt der berühmte Energieerhaltungssatz zum Zuge. Die von der Sonne kommende und von der Erde aufgenommene Gesamtenergie muss, ausreichend lange zeitgemittelt, in gleicher Energiemenge wieder ins Weltall abgestrahlt werden. Wäre dies nicht so, würde die Erde entweder verglühen oder zu einem Eisklumpen werden. Durch die Infrarot-Absorption der Treibhausgase ist dieses Energiegleichgewicht gestört. Die Natur – in Befolgung ihrer eigenen Gesetze – stellt das Energiegleichgewicht wieder her, indem sie die Bodentemperatur und damit auch die Temperatur der tiefen Atmosphäre erhöht, was das Abstrahlungsdefizit infolge Gegenstrahlung wieder ausgleicht.

Es handelt sich um gleichzeitig ablaufende dynamische Prozesse von Erwärmung durch eine Wärmequelle, hier die Sonne und von gleichzeitig ablaufender Abkühlung, hier von Infrarot ins Weltall. Das Gleichgewicht dieser beiden gegenläufigen Prozesse bestimmt die Erdtemperatur. Wer es genauer wissen will, sei verwiesen auf das Physiklehrbuch von W. Roedel und T. Wagner, Physik unserer Umwelt: Die Atmosphäre [1] oder den Beitrag „Atmospheric Radiation and the Greenhouse effect“ von Science of Doom (SOD) [10].

Manche Zeitgenossen haben allerdings mit der zweiten Erklärung Probleme und verweisen auf den 2. Hauptsatz der Wärmelehre, der besagt „ein kälterer Körper (kalte Atmosphäre) kann keinen wärmeren Körper (Ozean/Erdboden) weiter erwärmen„. Doch, kann er, wenn an Stelle von Kontakt-Wärmeleitung elektromagnetische Strahlung ins Spiel kommt. Die ist im 2. Hauptsatz nicht berücksichtigt. Jeder Festkörper, egal welcher Temperatur, strahlt IR in einem kontinuierlichen Spektrum ab [2]. Trifft diese Strahlung auf einen wärmeren Köper und wird sie nicht reflektiert, so erwärmt sie auch einen wärmeren Körper. Schließlich verschwinden die vom kälteren Körper kommenden und in den wärmeren Körper eindringenden IR-Photonen nicht wirkungslos im Nirwana, und sie „wissen“ auch nicht, woher sie stammen. Der Wärmehaushalt des wärmeren Körper wird durch die IR-Strahlung des kälteren Körpers erhöht.

Die Details dieses auf IR-Absorption von Treibhausgasen beruhenden Treibhauseffekts sind zwar komplex, aber die moderne Messtechnik bestätigt die Einzelheiten des geschilderten Mechanismus. So ist die Messung der von den Treibhausgasen erzeugten Gegenstrahlung, die den Auskühlungsvorgang des Erdbodens abschwächt und damit seinen Wärmehaushalt erhöht, heute Standard. Die Stärke des atmosphärischen Treibhauseffekts, die der direkten Messung nicht zugänglich ist, wird theoretisch und mit unvermeidbar hohen Fehlern zu über 30 °C berechnet. An diesen 30 °C hat das CO2, wie Tabelle 1 in Teil 1 zeigt, einen maßgebenden Anteil. Der Erdboden und die bodennahe Atmosphäre wären also im Mittel von Tag/Nacht, Jahreszeiten und Erdoberfläche ohne die Treibhausgase um diesen Wert kälter.

Bei all dem interessiert aber vorrangig die Treibhauswirkung des menschgemachten (anthropogenen) CO2. Und diese gibt die Fachliteratur und das IPCC mit etwas mehr als 1 °C bei jeder hypothetischen Verdoppelung der atmosphärischen CO2-Konzentration an, also bei Anstieg von 0,04% auf 0,08% und von 0,08% auf 0,16% etc. Das erscheint zunächst seltsam. Schließlich wurde doch oben der Erwärmungswert aller Treibhausgase von 30 °C genannt? Daran, so kann man vermuten, sollte gemäß Tabelle 1 (in Teil 1) das CO2 zwischen 9% bis 26% Anteil haben, also zwischen 3 und 8 °C? Warum trifft dies nicht zu?

Die Antwort: Der Zusammenhang von Temperatur und CO2-Konzentration ist nicht linear sondern logarithmisch, Details dazu beim IPCC [10] und insbesondere in einer AGU-Publikation [11]. Die Erwärmung ist daher bei Anstieg der CO2-Konzentration von von 0,04% auf 0,08% die gleiche wie von 0,08% auf 0,16%, obwohl 0,16% das Vierfache von 0,04% ist. Stark vereinfacht wird manchmal auch von „spektraler Sättigung“ gesprochen. Die Absorptionslinien des CO2 werden bei zunehmender Konzentration breiter und an den Flanken des Spektrums beginnen neue aufzutauchen.

Wer es lieber anschaulich möchte, vergleiche den Infrarot-Effekt der Treibhausgase mit dem Abdunkeln eines Fensters durch ein dunkles Tuch. Ein zweites Tuch darüber gehängt, dunkelt nur noch unwesentlich stärker ab. Für eine katastrophale Erderwärmung reicht also die berechnete Erwärmung durch anthropogenes CO2 nicht aus. Woher kommen dann die Warnungen?

 

Wasserdampfrückkoppelung

Die bisherigen Ausführungen lassen weitere entscheidende Effekte unberücksichtigt. Einer davon ist als Wasserdampfrückkoppelung bekannt. Bei Erwärmung der Atmosphäre durch zunehmendes anthropogenes CO2 sollte aus den Weltmeeren – insbesondere im Tropengürtel der Erde – mehr Wasserdampf ausgegasen. Wasserdampf ist das weitaus stärkste Treibhausgas. Die ursprünglich geringe Erwärmung durch CO2, so die der Wasserdampfrückkoppelung zugrunde liegende Idee, erhöht sich damit.

In einer entgegengesetzten Hypothese freilich führt mehr Wasserdampf bei ausreichend vorhandenen Kondensationskeimen zu mehr Wolken. Wolken, also kondensierende oder bereits kondensierte Flüssigkeitströpfchen, die nicht mit dem Gas „Wasserdampf“ oder gar mit Treibhausgasen zu verwechseln sind, schirmen die Sonnenstrahlung ab und wirken abkühlend. Die primäre Erwärmung infolge ansteigendem CO2 wird daher abgeschwächt, man spricht von Gegenkoppelung. Welchen Weg bevorzugt die Natur, Gegen- oder Rückkoppelung?

Auswertungen von Ballon-Radiosonden und Satellitenmessungen haben diese Frage bereits beantwortet. Alle bisher verfügbaren Messungen zeigen, dass Gegenkoppelungen überwiegen. Hierzu sagt der Klimaforscher und Leibniz-Preisträger Prof. Jan Veizer: „Bei beinahe jedem ökologischen Prozess und auf jeder Zeitskala sind der Wasserkreislauf und der Kohlenstoffkreislauf aneinander gekoppelt, aber Wasser ist nun einmal um Größenordnungen verfügbarer. Es ist nicht einfach nur da, um auf Impulse vom Kohlenstoffkreislauf zu warten, ganz im Gegenteil, es formt diesen aktiv“. Im Klartext sagt damit J. Veizer nur, dass das CO2 immer dem Wasserdampf folgt und damit auch keine durch ihn bedingte globale Temperaturänderung auslösen kann. In Vorträgen drückt Veizer er es noch plastischer aus: „Der Hund, Wasserdampf, wedelt mit dem Schwanz, CO2, nicht umgekehrt„.

Bis Ende des Jahres 2008 lagen keine veröffentlichten Messungen vor, die die Wasserdampfrückkopplung oder die Wasserdampfgegenkoppelung bestätigen oder widerlegen konnten. Diese unbefriedigende Situation änderte sich mit zwei grundlegenden Arbeiten, die beide in 2009 erschienen. Inzwischen sind weitere bestätigende Publikationen hinzugekommen.

Die Autoren G. Paltridge et al. zeigten als erste, dass die spezifische und relative Feuchte in der mittleren und oberen Troposphäre, also oberhalb 850 hPa Luftdruck, im Gegensatz zu den Annahmen der Klimamodelle des IPCC, in den Jahren 1973 bis 2007 mit den steigenden Temperaturen dieser Zeit abnahmen, was mit Wasserdampfrückkoppelung unvereinbar ist [3]. Lediglich die wenig rückkopplungswirksame Feuchte der unteren Troposphäre nahm in dieser Zeit zu und selbst dies nur in gemäßigten Breiten signifikant.

Die zweite Arbeit wurde von dem weltbekannten Klimaforscher Prof. R. L. Lindzen und seinem Mitautor Y.-S. Choi verfasst [4]. Sie wiesen ebenfalls nach, dass Gegenkoppelung vorliegen muss, konnten aber zudem noch den Effekt quantifizieren. Hierzu untersuchten sie die Empfindlichkeit des Klimas auf externe Störungen und benutzten dafür die Messdaten von ERBE (Earth Radiation Budget Experiment), geliefert vom ERBE-Satelliten, der 1984 vom Space-Shuttle aus gestartet wurde. Hieraus konnten sie die externen Einwirkungen auf das Strahlungsgleichgewicht extrahieren, wie sie zum Beispiel durch natürliche Oszillationen, wie El Niño, La Niña oder aber durch Vulkanausbrüche (Pinatubo), hervorgerufen werden.

Da die Wirkung von CO2 ebenfalls über die Störung des Strahlungsgleichgewichts abläuft, ist die analoge Übertragung physikalisch korrekt. Unter weiteren Belegen, die gegen eine Wasserdampfrückkoppelung sprechen, soll hier nur noch der sogenannte Hot-Spot erwähnt werden, eine bei Wasserdampfrückkoppelung unabdingbar zu erwartende Erwärmung in mehreren km Höhe über dem Tropengürtel der Erde. Vom Hot-Spot gibt es aber bis heute keine Spur [5]!

Die Klimasensitivität

An dieser Stelle ist es jetzt an der Zeit, den mehr politischen als physikalischen Begriff „Klimasensitivität“ zu beschreiben. Es gibt keine andere Maßzahl, in welche soviel über die Erwärmungswirkung des CO2 hineingepackt ist. Sie bezeichnet die Änderung der globalen Mitteltemperatur der Erde in Folge einer (hypothetischen) Verdoppelung des atmosphärischen CO2. Unterscheidungen zwischen spektralem Effekt oder Wasserdampfrück- bzw. Wasserdampfgegenkoppelung kennt die „Klimasensitivität“ nicht. Es geht bei ihr nur um einen einzigen, vor allem politisch brauchbaren Zahlenwert.

Technisch gibt es allerdings zwei Arten von Klimasensitivitäten. Aufgrund der thermischen Trägheit der Weltmeere reagiert das globale Klimasystem grundsätzlich nur extrem langsam auf Veränderungen des Strahlungsantriebs. Daher wird zwischen Equilibrium Climate Sensitivity (ECS) und Transient Climate Response (TCR) unterschieden. Die ECS beschreibt den Temperaturanstieg, der zu beobachten wäre, nachdem das Klimasystem nach einer Veränderung des Strahlungsantriebs den neuen Gleichgewichtszustand erreicht hat, wofür Jahrtausende nötig sind.

Um den Einfluss des Menschen auf das Klima zu quantifizieren, ist dagegen die Transient Climate Response (TCR) geeigneter. Letztere ist definiert als der Temperaturanstieg, der zum Zeitpunkt einer Verdoppelung der CO2-Konzentration in einem Szenario beobachtet wird, bei dem diese Verdoppelung pro Jahr um 1 % anwächst. Meist wird der Unterschied zwischen ECS und TCR vernachlässigt.

Die Klimasensitivität ist, wie schon erwähnt, eine politisch brauchbare Größe und spielt daher auch die maßgebende Rolle beim Pariser Klima-Abkommen [6]. In der Fachliteratur wird die Klimasensitivität in einem weiten Bereich von fast Null bis hin zu 4,5 °C angegeben. Man kann dies auch prosaischer ausdrücken – der Wert der Klimasensitivität ist unbekannt! Diesen unbefriedigenden Sachverhalt bestätigt insbesondere auch das IPCC, wenn auch nur sehr verschämt und gedrechselt, in folgender Fußnote

No best estimate for equilibrium climate sensitivity can now be given because of a lack of agreement on values across assessed lines of evidence and studies“ [7].

Was sagt aber nun die Klima-Fachliteratur zur Klimasensitivität, denn die Fachliteratur sollte schließlich die ultimative Basis sein. Die Antwort lautet ähnlich wie die Antwort des bekannten Börsianers Kostany, der einmal, nach seiner Erwartung der kommenden Börsenkurse gefragt, antwortete, „sie fluktuieren„. Etwas mehr Information über die Klimasensitivität als dieser weltbekannte Börsen-Guru über die zukünftigen Börsenkurse gibt es glücklicherweise schon.

Der französische Klimaforscher Francois Gervais hatte in einer seiner Fachpublikationen alle Fachveröffentlichungen über die Zahlenwerte von ECS und TCR gegen ihre Veröffentlichungszeiten aufgetragen. Dabei zeigte sich ein interessanter Trend. Die Wissenschaft gibt im Großen und Ganzen  immer kleinere Werte bei immer jüngeren Veröffentlichungen an. Hier die inzwischen von F. Gervais aktualisierte Abbildung

Bild 1: Klimasensitivitätswerte von ECS und TCR in Abhängigkeit vom Veröffentlichungsdatum. Der TCR-Trend hin zu tieferen Werten als 1 °C ist unverkennbar [8], [9]. Damit wäre übrigens das 1,5 °C – Ziel des Pariser Klima-Abkommens längst erreicht und das Abkommen überflüssig geworden.

 

Auf die Methoden zur Berechnung der Klimasensitivität ECS und/oder TCR einzugehen, übersteigt den hier gesteckten Rahmen. Vielleicht kann man sehr grob drei Wege unterscheiden: durch theoretische Betrachtung, durch Analyse von Proxydaten, wie zum Beispiel Eisbohrkernen und aus Klima-Computermodellen. Am fragwürdigsten sind dabei zweifellos Klimamodelle, denn diese können bislang noch nicht einmal die Klimavergangenheit ohne künstliche Nachhilfen wiedergeben. Monokausale CO2-Abhängigkeit, wie in Klimamodelle hineingesteckt, liefert nur „rubbish in, rubbish out“. Gemäß Bild 1 jedenfalls darf man mit hoher Wahrscheinlichkeit von einer Klimasensitivität TCR von 0,5 °C bis höchstens 1,5 °C ausgehen.

Fazit: Obwohl die spektrale Erwärmungswirkung des CO2 theoretisch gut bekannt ist, ist dennoch die Erwärmungswirkung des anthropogenen CO2 eine unsichere Größe. Zu groß ist die Anzahl der beteiligten Prozesse (stellvertretendes Beipiel: durch das Sonnenmagnetfeld modulierte Wolkenbildung), zu hoch sind ihre Berechnungsunsicherheiten. Verlässt man sich auf die begutachtete Fachliteratur, so zeigt diese mit immer jüngeren Veröffentlichungszeiten ein stetiges Abnehmen der TCR-Klimasensitivitätswerte. Die zur Zeit beste TCR-Wert liegt zwischen 0,5 und 1 °C.  Dieser Wertebereich ist unbedenklich. Er liegt zudem weit innerhalb der natürlichen Temperaturschwankungen. Es ist also nicht verwunderlich, dass man aus dem natürlichen Klimarauschen keinen anthropogenen Beitrag heraushören kann.

Zu Katastrophenwarnungen über die Erwärmungswirkung des anthropogenen CO2 besteht jedenfalls nicht der geringste Anlass.

Bisherige Teile der Serie „Was Sie schon immer über CO2 wissen wollten“:

  1. Teil 1 – der CO2-Untergrund (27.Juni 2019)
  2. Teil 2 – CO2-Anstieg menschgemacht oder nicht?
  3. Teil 3 – der globale CO2-Kreislauf

 

Quellennachweise

[1] W. Roedel und T. Wagner, Physik unserer Umwelt: Die Atmosphäre, Springer, 5. Auflage.

[2] https://de.wikipedia.org/wiki/Plancksches_Strahlungsgesetz

[3] G. Paltridge et al., Trends in middle- and upper-level tropospheric humidity from NCEP reanalysis data, 2009

[4] R. Linzen and Y.-S. Choi, On the determination of climate feedbacks from ERBE data, 2009

[5] Joanne Nova

[6] Pariser Klimaabkommen

[7] SPM, Summary for Policymakers, IPCC, S. 16, Fußnote, 2013

[8] F. Gervais, Anthropogenic CO2 warming challenged by 60-year cycle, 2016

[9] F. Gervais, Vortrag bei der EIKE-Klimakonferenz in Düsseldorf, 2018

[10] Science of Doom

[11] IPCC Climate Change 2001, The scientific basis, Chapter 06, S. 358, Tab. 6.2

[12] Y. Huang and M. B. Shahabadi, Why logarithmic? A note on the dependence of radiative forcing on gas concentration