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(a) Effective radiativs forcing from 1750 16 2022
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S Satellite data show increasing leaf area of vegetation
GO, IS PLANT FOOD

WL mostly due to climate change and CO, fertilization effects.
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Only the Net-Zero
emissions scenarios
guarantees staying

e — ) below 2 °C and
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2050 long-term strategy

The EU aims to be climate-neutral by 2050 — an economy with net-zero greenhouse gas emissions.
This objective is at the heart of the European Green Deal 4, and in line with the EU's commitment i

to global climate action under the Paris Agreement 4§, Von der Leyen’s flagship petrol and diesel ban isn’t even
backed by her own party

The transition to a climate-neutral society is both an urgent challenge and an opportunity to build a Fronean Pooulis Barty-swantstoiscrap e tians et fie gawing codt ciiving
better future for all. crisis

All parts of society and economic sectors will play a role — from the power sector to industry, mobility, Conservative forces in the European

buildings, agriculture and forestry. Parliament are Considering calling on the EU
o | | o to drop its 2035 ban on petrol and diesel

The EU can lead the way by investing into realistic technological solutions, empowering citizens and . . .

aligning action in key areas such as industrial policy, finance and research, while ensuring social engines in an embarrassmg blow to Ursula

faimess for a just transition. von der Leyen...



Is the alarmist narrative based on sand or rock?



Critical Issues

» The projected warming for the 215t
century strongly depends:

1. on the Shared Socioeconomic
Pathways (SSP) chosen for the
simulation:

2. on the equilibrium climate
sensitivity (ECS) of the model,

3. on the reliability of the GCMs in
properly reconstructing past
climate changes
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Critical Issue 1

Which Shared Socioeconomic Pathways (SSP)

IS realistic?

High

Degree of global socioeconomic
challenges for mitigation

Low

SSP5: SSP3:
Fossil-fueled Regional
development rivalry

SSP2:
Middle of the
road

SSP1:
Sustainable
development

Low

Degree of global socioeconomic High
challenges for adaptation




Only the SSP2-4.5 Is realistic
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COMMENT

29 January 2020

Emissions - the ‘business as usual’
story is misleading

Stop using the worst-case scenario for climate warming as the most likely outcome -
more-realistic baselines make for better policy.

Zeke Hausfather ™ & Glen P. Peters

Global fossil-fuel emissions (gigatonnes of CO,)

Historical
emissions

|EA* projections

suggest a more

plausible path.

W
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policies
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no policy used as ‘business

(SSP5-8.5)¢ as usual’
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policies
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G Gt wehen | e | o DCC ARG mostly highlights the SSP5-8.5

driver Type Category Historical Period for RCPE.S/S5P5-8.5 RCE.5/S5P5-8.5

w scenario.
':3:"% B B | Yet, IPCC ARG6 also acknowledqges:
| Heawy preciptationandpuval foed | | 8 |
S “However, the likelihood of high-
] ~emissions scenarios such as RCP8.5 or
T ' SSP5-8.5is considered low in light of
s | | | recent developments in the energy
T g 5 sector (Hausfather and Peters, 2020a,b).
Fi— | | Studies that consider possible future
e sien | u | - emissions trends in the absence of
oo | | | ~additional climate policies.... (are)
Menocn et . 1] : S -
M e | approximately in line with the
i _— intermediate RCP4.5, RCP6.0 and SSP2-
et 4.5 scenarios” (pp. 238-239)

N

! Radiation at surface

Medum conbdence | Low eridercein | (o anencsl I Ll

S e | I EES .Table 12.12 | Emergence of CIDs in different time periods. pp. 1856
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Critical Issue 2 Climate  Initial Feedbacks

sensitivity warming

Which Models could be realistic?

(The “Equilibrium Climate Sensitivity” issue)




CMIP6 Global Climate Models (GCMs)
Equilibrium Climate Sensitivity (ECS) «huge» uncertainty

The ECS is an estimate of the global surface warming achieved at equilibrium after a

Climate sensitivity in CMIP6 models
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COMMENT | 04 May 2022

Climate simulations: recognize the
‘hot model’ problem

The sixth and latest IPCC assessment weights climate models according to how well they
reproduce other evidence. Now the rest of the community should do the same.

Zeke Hausfather , Kate Marvel, Gavin A. Schmidt, John W. Nielsen-Gammon & Mark Zelinka

Yy f =




1)

2)

3)

4)
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Addressing the "Hot Model” Problem

CMIP6 GCMs: ECS =1.8-5.8 °C

Sherwood et al. (Rev. Geophysics 58, e2019RG000678, 2020):
ECS = 2.6-3.9 °C (66% confidence)

ECS = 2.3-4.7 °C (95% confidence)

IPCC ARG (2021) accepts the evaluations of Sherwood et al. (2020)

Lewis (Climate Dynamics 60, 3139-3165, 2023):
ECS =1.75-2.7 °C (66% confidence)
ECS = 1.55-3.2 °C (95% confidence)

Scafetta (GRL, Climate Dynamics, Climate, Geoscience Front. 2021-2023).
ECS <= 3 °C, with possibility of ECS = 1-2 °C

Spencer and Christy (Theoretical and Applied Climatology, 2023):
confirm Lewis and Scafetta’s low ECS estimates.



Important new paper challenges IPCC’s claims
about climate sensitivity
Posted on September 20, 2022 by niclewis | 185 Comments

by Nic Lewis

Lewis’ paper critiqued the methods used in the Sherwood et al. paper, finding

significant errors, inconsistencies and other shortcomings. Lewis remedied these

shortcomings and also revised key input data, almost entirely to reflect more

recent evidence. The results of Lewis’ analysis determined a likely range of 1.75
to 2.7°C for climate sensitivity. The central estimate from Lewis’ analysis is 2.16
°C, which is well below the IPCC ARG likely range. This large reduction relative
to Sherwood et al. shows how sensitive climate sensitivity estimates are to input
assumptions. Lewis’ analysis implies that climate sensitivity is more likely to be

below 2 °C than it 1s to be above 2.5 °C.



climate
models
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Scafetta (2013-2023)
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ECS range various papers
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]

observed

warming

Rugenstein et al. (2023): “Early in the 2010s, a substantial discrepancy
was noted between estimates of climate sensitivity derived from
climate models and estimates based on the observed warming record
and radiative balance ... Estimates based on observed warming
pointed to much lower values than those derived from models”.



Temp. Anom. 1980-1990 (°C)

CMIP6 GCMs versus
Temperature Data from

1980 to 2022

Only the LOW-ECS GCMS

might be realistic

+ Scafetta, N. Geophys. Res. Lett. 2022, 49, e2022GL097716.

» Scafetta, N. Climate 2021, 9, 161.d0i.10.3390/cli9110161

» Scafetta, N. Clim Dyn (2023). d0i.10.1007/s00382-022-06493-w
» Scafetta, N. Atmosphere 2023, 14, 345. doi.10.3390/atmo0s14020345
» Scafetta, N. Geophys. Res. Lett. 2023, 50, e2023GL104960.
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underestimated
the role of

the Sun?

Critical Issue 3

Is there further evidence that the models
may be physically incorrect?

(Warm biases and natural variabllity)




IPCC ARG
Figure 3.10
p. 443

The GCMS are not
able to reproduce the
warming of the
troposphere

a) 1979-2014

b) 1979-1997 ¢) 1998-2014
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Figure 3.10 | Observed and simulated tropical mean temperature trends through the atmosphere. Vertical profiles of temperature trends in the tropics (20°5-20°N)
for three periods: (a) 1979-2014, (b) 1979-1997 (ozone depletion era) and (c) 1998-2014 (ozone stabilization era). The black lines show trends in the Radiosonde Innovation
Composite Homogenization (RICH) 1.7 (long dashed) and Radiosonde Observation Correction using Reanalysis (RAOBCORE) 1.7 (dashed) radiosonde datasets (Haimberger
et al, 2012), and in the ERAS/5.1 reanalysis (solid). Grey envelopes are centred on the RICH 1.7 trends, but show the uncertainty based on 32 RICH-observations members of
version 1.5.1 of the dataset, which used version 1.7.3 of the RICH software but with the parameters of version 1.5.1. ERAS was used as reference for calculating the adjustments
between 2010 and 2019, and ERA-Interim was used for the years before that. Red lines show trends in CMIPS historical simulations from one realization of each of 60 models.
Blue lines show trends in 46 CMIP6 models that used prescribed, rather than simulated, sea surface temperatures (SSTs). Figure is adapted from Mitchell et al. (2020), their
Figure 1. Further details on data sources and processing are available in the chapter data table (Table 3.5M.1).
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How does the rural-only temperature erheciiismizprete ac tempesat g all stat

1 Using urban and rural

A 1 El

record compare to the urban & rural

temperature record? g
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warming/cooling/warming periods £ o /\VVA\-—/

» Except early warming to 1940s and cooling to
1970s is more pronounced o el i . el o g

» Smoothed curves ("11-point binomial") used to improve clarity

-1
* Long-term warming (0_6°C per century) is 1880 1900 1920 1940 1960 1980 2000 2020
much less than the “urban and rural” L
estimates (O9°C per Century) Northern Hemisphere land temperatures — using only rural stations
CRUTS4-CMIP5 mean Tmin - Tmax: 2005-2014 minus 1945-1954 °c 1 USing Only rural Stations

?5 nﬁ;m&

()
o
[*¥]
=
05 4
g
[~
0 E .
s O
05 ke V\/ﬂ
-1
i » Adapted from Soon and colleagues (2023), Climate, 11(9), 179
u » All curves shown relative to 20t century average values
350 300 30 0 50 100 150 » Smoothed curves ("11-point binomial") used to improve clarity
-1
1880 1900 1920 1940 1960 1980 2000 2020

Scafetta Clim. Dyn.(2021); Soon et al. Climate (2023) YEAR



IPCC ARG YT

Figure 3.2,
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forcing datasets disagree (Figure 3.2c). Before the year 1300, larger
disagreements between models and temperature reconstructions
are expected because forcing and temperature reconstructions are
increasingly uncertain further back in time, but specific causes have
not been identified conclusively (Ljungqvist et al., 2019; PAGES 2k
Consortium, 2019) (medium confidence). For the historical period,
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Melting glaciers in Western Canada are
revealing tree stumps up to 7,000 years old
where the region’s rivers of ice have retreated
to a historic minimum, a geologist said today.

i

lacu:r—buricd forests from ~ 1()0() years ago unco‘r a warm Medieval period
Figure 2. Students learn how scientists combine living and dead
trees to create millennial-length records of temperature, such as
the buried forests emerging here from the wasting margin of
Mendenhall Glacier (Credit: Jesse Wiles). Davi et al., 2019

LA £

Christian Schliichter: "Alpen ohne Gletscher? Holz- und Torffunde als Klimaindikatoren, Die Alpen, 6/2004; The Alps with little
ice: evidence for eight Holocene phases of reduced glacier extent in the Central Alps, The Holocene, 2001, 11/3: 255-265

Trees under glaciers
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The Susten pass (Switzerland) as it is today (above) and as it probably
was in Roman times, 2000 years ago green and with several trees
(below). (Die Alpen / Atelier Thomas Richner based on a draft from
Christoph Schltichter).




* Only solar activity
has a millennial
cycle.

(Steinhilber et al.,2012)

 Which correlates
with the millennial
cycle of
temperatures
(Ljungqgvist, 2010)

Summer European
Temperature

(Luterbacher et al., 2016)
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Why do the
GCMs fall In
reproducing

the Medieval
Warm Period?

Scafetta, (2023). Geoscience Frontiers 14(6), 101650.
Connolly, ...., Scafetta, et al. (2023). Research in Astronomy

and Astrophysics 23, 105015.

Soon, ...., Scafetta, et al. (2023). Climate 11, 179.

Scafetta, Bianchini, (2023). Climate 11(4), 77.

Scafetta, Bianchini, (2022). Frontiers in Astronomy and
Space Sciences, 937930.

Connolly, ..., Scafetta, et al. (2021). Research in Astronomy

and Astrophysics 21, 131.

Scafetta, (2021). Atmosphere, 12, 147.
Scafetta, et al. (2019). Remote Sensing, 11(21), 2569.

Wrong Total Solar

Irradiance (TSI)
forcing

Additional solar

forcings not related
to TSI
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Temperature anomalies 1850-1900 (°QC)

The 80% of solar influence on climate may not Scafetta, N.: Empirical assessment of the role of the

be caused solely by total solar irradiation Sun in climate change using balanced multi-proxy solar
forcing, but rather by other solar climate records. Geoscience Frontiers 14(6), 101650, 2023.
processes (e.g. cosmic rays). Pagina Web: https://doi.org/10.1016/j.9sf.2023.101650
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Forbush decreases: significant response
Is found in all studied aerosol and cloud
data suggesting that cosmic ray ionization
IS Important for cloud physics.

Sunspots and Clouds
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“Realistic”
impacts and risks for the 215t century

1) Low ECS Climate Models
2) Considering Urban Heat contaminations
3) Considering Natural/Solar variability




Impacts and risks
of “realistic”

global warming
projections for the
twenty-first century
using the:

SSP2-4.5 scenario

GCM optimization:

A) On the surface temperature
records

B) On the lower troposphere
temperature records
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GCM optimization assuming natural

variability non reproduced by the models
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Conclusion:

Climate alarmism is not justified - Net-zero is Unnecessary

. (IPCC likely range) (this work)
Impacts & risks o S Wl -
+6.0 °C 2.5-4.0 °C ECS GCM projections new "realistic” projections
I Very High I 1 r 1
_ High
g (1) (2) (3)
Moderate +5.0°C
Low +4.63 °C
Very Low
. IPCC-like 0 a
i "realistic" O E
5 +3.64 °C projection w3 er £
= SSP5-8.5 ] SIS S0 3 =
&  very-unlikely . oo 62 2
= scenario =& o P o
+3.0°C E SSP3-7.0 2 z g @ o>
unlikely +2.69 °C net-zero ® g E g
scenario emission T S £
scenario ] n=Z
2.24°C O 0
c n - 1
— S SSP2-4.5 -
2.0°C PARIS AGREEMENT GOAL £ likely .
% scenario SSP2-4.5 +1.63°C
+1.5°C o o 1.39 °C
1.5°C PARIS AGREEMENT GOAL © : 1.36 °C -
111°C SSFE2IE SSP24.5  SSP2-4.5
Hosc 2012-2022 mean
HadCRUTS
Table 3B 5 Table 4
+0.0°C
PRE-INDUSTRIAL AVERAGE

2080-2100 likely (66%) warming projections

SSP2-4.5 approximately agrees with real
world action based on current policies




Economic Issues
(hints)
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Seven Year Model Detrended Mass CO:2 Residue Mean (IMF Max=2)

Mean of detrended
CO2 concentration
residue from 2015
to the end of 2019.
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The temperature targets in the Paris Agreement cannot be met without very rapid reduction of
greenhouse gas emissions and removal of carbon dioxide from the atmosphere. The latter
requires large, perhaps prohibitively large subsidies. The central estimate of the costs of climate
policy, unrealistically assuming least-cost implementation, is 3.8-5.6% of GDP in 2100. The
central estimate of the benefits of climate policy, unrealistically assuming high no-policy
emissions and constant vulnerability, is 2.8-3.2% of GDP. The uncertainty about the benefits is
larger than the uncertainty about the costs. The Paris targets do not pass the cost-benefit test
unless risk aversion is high and discount rate low.

Keywords: Climate policy; net-zero; cost-benefit analysis.
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Are electric cars
the future?

Well, invented
In the 19th
century....

Electric cars remained popular until advances in internal-combustion engine (ICE) cars and mass production of cheaper gasoline- and diesel-powered

il vehicles, especially the Ford Model T, led to a decline.*? ICE cars' much quicker refueling times and cheaper production-costs made them more popular.

However, a decisive moment came with the introduction in 1912 of the electric starter motor'*”! that replaced other, often laborious, methods of starting
the ICE, such as hand-cranking.

Gustave Trouvé's personal electric World's first trolieybus by Werner The Flocken Elektrowagen (1888)  Early electric car built by Thomas Parker
vehicle (1881), the world's first von Siemens, Berlin 1882 was the first four-wheeled electric - photo from 1895042
publicly presented full-scale electric car in the world!*"]

car powered by an improved Siemens
motor

"La Jamais Contente”, 1899 NASA's Lunar Roving Vehicles were battery-driven The General Motors EV1, one of the cars

introduced due to a California Air Resources

Board (CARB) mandate, had a range of 260 km
https://en.wikipedia.org/wiki/Electric_car sy R LSS A
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