

COSTS OF ELECTRICITY AND CO₂ EMISSIONS IN THE PRESENCE OF RENEWABLES

Introduction: the renewable showcase and the logics behind the benefits

- Renewables expansion and the cost of electricity
 - Generation LCOE (what is shown).
 - Grid cost of electricity (what is hidden).
 - The green trick.
- Renewables expansion and CO₂ emissions
- Is there a limit for renewables?
- US CO₂ emissions abatement attributable only to renewables.
- How renewables hinder CO₂ emissions reduction.
- > Conclusions & epilogue.

Douglas Pollock

The renewable showcase

The cost of electricity

What we are told to acknowledge...

Electricity generation price: Comisión Nacional de Energía, CNE; <u>https://www.cne.cl/precio-medio-de-</u> <u>mercado-2/2020-2/</u>

Renewable generation fraction: Generadoras de Chile; http://generadoras.cl/generacion-electrica-en-

<u>chile</u>

The dissimilar costs of electricity

...versus facts

Energy prices in Europe. <u>Energy matters: Green Mythology and</u> <u>the High Price of European Electricity</u>

Bob Irvine, WUWT excerpt: <u>Does Wind Intermittance</u> <u>Over Short Hourly Periods Gives a Clearer Picture?</u>

Generation in the absence of renewables

 $W = W_T = W_b + W_0$

Generation in the presence of renewables

Generation cost (generator perspective)

Generation cost (grid perspective) Efficient scenario: k < 2 Real scenario: $k \ge 2$ Backup: CCGT, SCGT, oil, coal **Backup: CCGT** Weighted LCOE & Grid COE Weighted LCOE & Grid COE 100 100 80 80 G = 67,4 \$/MWh $T_0 = 56$ \$/MWh 60 [4 / WWh] [4 / WWh] Weighted R 40 Weighted R $(f_R)_{max}$ 40 T = 55,4 \$/MWh Weighted T Weighted T $(\mathbf{f}_{\mathbf{R}})$ G 20 20 G without renewables G without renewables R = 12 \$/MWh 0 10% 10% 20% 30% 20% $R_0 = 0$ \$/MWh 40% 0% 30% 40% f_R [%] f_R [%] Weighted thermal cost decreases with the renewable Weighted thermal cost increases with the renewable fraction. fraction. k: Inefficiency factor defined as the ratio between the non-baseload to the baseload

- operating heat rate $H = \frac{h_n + g_0 h_0}{h_h}$; $g_0 h_0$ is the rotating reserve fraction (Mbu/MWh)
- **R**: Renewable LCOE
- T: Thermal LCOE \geq
- **G**: Grid cost of electricity \triangleright

Generation cost (grid perspective)

$$F = e_g H$$

F: fuel cost of generation (\$/MWh)
 e_g: unit energy cost for natural gas (\$/Mbtu)

Backup alternatives to CCGT

Suitable

Non suitable

Technology	Characteristic
CCGT (combined cycle gas turbines)	As such in the range 100% - 50% load capacity. CO ₂ emissions are slightly reduced (k < 2).
SCGT (simple cycle gas turbines)	CO_2 emissions increase (k > 2).
Oil (Diesel, turbines)	Expensive, polluting and emit more CO ₂ (k > 2)
Hydroelectric (dam)	Expensive, designed for electricity demand, not to backup renewables.
Lithium-ion batteries / green H ₂	Extremely expensive, not enough minerals for large-scale backup.

Technology	Characteristic
Coal	
Biomass	Slow reaction to random weather variability (turtles and rabbits run at different speeds). (Coal, biomass: k > 2
Geothermal	
Hydroelectric (run of river)	Flow-limited generation, used as baseload, designed for electricity demand, not to backup renewables.
Nuclear	For security

Investment versus capital cost of electricity The green trick

- > The investment cost in MW^{-1} is not an electricity cost.
- ▶ The capital cost in MWh^{-1} is.
- Although the capital cost is proportional to the investment cost, it is inversely proportional to the capacity factor.
- > The capacity factor of a thermal generator can be 2 to 6+ times greater than that of renewables.

$$\Box A = Payment = \frac{rV}{(1 - (1 + r)^{-n})} [\$ (Yr MW)^{-1}]$$

 $\Box \ C = Capital \ cost = \frac{A}{8760 \ Z} \ [\$ \ MWh^{-1}]$

r = Weighted average capital cost (WACC)
V = Investment cost

n = *Project lifetime Z* = *Capacity factor*

Investment versus capital cost of electricity The green trick

capital cost will still be much higher than that of a thermal source.

- V_{R,T}: renewable and thermal investment costs.
- C_{R,T}: renewable and thermal capital > Z: renewable capacity factor. costs.

Green versus actual cause

Precios de generación eléctrica: Comisión Nacional de Energía, CNE; <u>https://www.cne.cl/precio-medio-de-mercado-2/2020-2/</u> Fración de generación renovable: Generadoras de Chile; <u>http://generadoras.cl/generacion-electrica-en-chile</u> Brent oil price: University of British Columbia; <u>https://fx.sauder.ubc.ca/data.html</u>

There are three ways to reduce grid CO₂ emissions:

- 1. By generating less electricity.
- 2. By replacing coal generation with natural gas.
- 3. In theory, by increasing renewables while proportionally reducing fossil fuel-based generation.

e = 0,06 H

- e: CO₂ output emission rate [Tn/MWh]
- H: operating heat rate [MBtu/MWh]

Efficient scenario: k < 2 Backup: CCGT Real scenario : k ≥ 2 Backup: CCGT, SCGT, oil, coal

k: Inefficiency factor defined as the ratio between the non-baseload to the baseload CO₂ output emission rate = $\frac{\omega_n + g_0 \omega_0}{\omega_b}$; $g_0 \omega_0$ is the rotating reserve fraction.

$$e = \frac{\omega_b W_b + \omega_n W_0}{W_T} (Ton MWh^{-1})$$

$$W_T = W_b + W_0$$
 (MWh)
 $E = e W_T (Ton Yr^{-1})$

W _b	Wo
Thermal baseload	Thermal non-baseload

$$e = \frac{\omega_b W_b + \omega_n (W_0 + W_{R_n}) + R}{W_T} (Ton MWh^{-1})$$

$$\frac{W_b W_R}{W_R} \frac{W_{Rn}}{W_R} \frac{W_0}{W_0}$$
Thermal baseload Renewable Thermal backup non-baseload

- \succ W_T : thermal generation (*MWh* Yr⁻¹)
- \succ E: CO₂ emissions (*MTn* Yr⁻¹)
- \blacktriangleright e: CO₂ output emissions rate (*Tn MWh*⁻¹)
- $\succ \omega_b$: baseload CO₂ output emission rate (*Tn MWh*⁻¹)
- \succ ω_n: non-baseload CO₂ output emission rate (*Tn MWh*⁻¹)
- \succ *R*: rotating reserve fraction = $g_0 \omega_0 W_{R_n}$ (*Tn*)

Is there a limit to renewable generation on a grid?

1.-
$$Q = \frac{10^6 W}{8760 Z} = \frac{D}{Z}$$

$$2.- \qquad N = fQ = f\frac{D}{Z}$$

$$3. \qquad N=D \implies f=f_{max}=Z$$

$$4.- \qquad q = \frac{N}{D} = \frac{f}{Z}$$

5.-
$$f = f_{max} \Longrightarrow q = 1$$

6.- E = N - D

Installed or nameplate capacity (MW) to satisfy the demand W. D is the hourly demand (MWh/h = MW).

Installed or nameplate capacity of a generation source to f a **matrix** he fraction f of W (MW).

Point at which the generator operating at full load matches the hourly demand.

 $\mathbf{F}_{enertration}$ \mathbf{F}_{e

The penetration factor is equal to 1 when the source reaches its maximum generation fraction in the grid.

E represents the excess (positive) or slack (negative) generation capacity (MW).

Slack and excess of renewable generation

Renewable generation limit for 15 countries

2023 electricity generation

Russia

US CO₂ emissions abatement attributable to renewables

2022 US electricity generation

Reduction in CO ₂ emissions according to backup fuel type				
			Fuel	
Variable	Description		Gas	All
е	Natural gas CO ₂ output emission rate	Tn/MWh	0,426	0,496
ΔE	Change in US CO ₂ emissions (w/ — w/o renewable generation)	MTn/Yr	-105,0	-15,9
ΔE _{grid}	Change as % US grid CO ₂ emissions	%	-5,7%	-0,9%
ΔE _{US}	Change as % US all-source CO ₂ emissions	%	-1,9%	-0,3%
ΔE _{global}	Change as % global all-source CO ₂ emissions	%	-0,3%	0,0%

Source: EPA 2022 generation, CO₂ output emission rate and non-baseload CO₂ output emission rate; <u>https://www.epa.gov/egrid/data-explorer</u>

f _{total} W/r total generation	f _{backup} W/r backup generation	Z	
13,6%	25,0%	25,8%	

Renewables hinder CO₂ emissions abatement 2022 US electricity generation

Reductions in CO₂ emissions in some countries have largely been achieved because of replacing coal by gas and not because of replacing coal by renewables.

Coal \rightarrow renewables v. coal \rightarrow natural gas				
Fuel	Variable	Description	Unit	Value
Natural gas	% δ(ΔE _{CO2})	CO ₂ emissions percentage difference (natural gas backup)	%	22,2%
All	% δ(ΔE _{CO2})	CO ₂ emissions percentage difference (all fuels backup)	%	83,9%

Variable	Description	Unit	Value
W _R	Coal generation replaced by renewables	TWh/Yr	574,7
Ec	CO_2 emissions abated by coal generation reduction	Mtn/Yr	566,2
E _R (natural gas)	CO_2 emissions added by backup generation (only natural gas)	Mtn/Yr	300,8
E _R (all fuels)	CO_2 emissions added by backup generation (all fuels)	Mtn/Yr	389,9
E _G	CO_2 emissions from natural gas generation (no renewables)	Mtn/Yr	241,9

Source: EPA 2022 generation; https://www.epa.gov/egrid/data-explorer

Conclusions

- By increasing renewable generation:
 - > The cost of electricity inevitably increases.
 - \succ CO₂ emissions increase in non-ideal grids, i.e., almost everywhere.
- There is a fundamental limit to renewable generation.
- Replacing coal by renewables hinders CO₂ emissions abatement.
- The West's biggest mistake: asymmetric renewable expansion by decommissioning fossil fuels-based power plants without consistently Increasing backup gas-fired generation capacity.
- Net-zero: an insane utopia trying to become true.

Since 2017, for every 1 TWh of coal generation capacity dismantled in the West, 2.3 TWh of that same generation capacity has been added in China and India.