The connection between cosmic rays, clouds and climate

Henrik Svensmark, DTU Space

In collaboration with Martin Enghoff, Nir Shaviv, Jacob Svensmark, and Irina Thaler DTU/Lyngby-Oxford-Jerusalem

The connection between cosmic rays, clouds and climate

1. The Cosmoclimatological Hypothesis

- Cosmic rays
- Presentation of the hypothesis
- The microphysical mechanism, theoretically and experimentally
- 2. Starformation and Supernova
 - Influence on life

Cosmic Rays

Super Nova Remnant Acceleration of cosmic rays

Solar magnetic field

Solar system

Temperatures over the last 1000 years

How can supernovae influence Climate?

2019-11-01 00:00:00 UTC

www.digital-typhoon.org

Himawari-8 [RGB]

NII/NICT

Net effect of clouds is to cool the Earth by about $20-30 \text{ W/m}^2$

Svensmark & Friis-Christensen, JASTP 1997, Svensmark, PRL 1998, Marsh & Svensmark, PRL, 2000. (update 2005)

Aerosols and microphysics of clouds Satellite observations of ship tracks

More than ten years of experimental work

CERN

DTU, National Space Institute

ASTRID accelerator, Aarhus Universitet

BOULBY Underground Laboratory (1.1 km underground)

Experimental challenges

1-2 nm stable aerosols

So experimentally there is good evidence for the generation of ultrafine aerosols by ions ~ 1-3 nm

CCN

 An important remaining question:
Will the small aerosols grow to Cloud Condensation Nuclei (~ 50 nm) ?
Nucleation
If not no impact on clouds.

RESULTS FROM Global Circulation Models (2009 – present) (No ion-effects on growth)

Is the theory dead again?

Cosmic ray theory

1996 - 2016

Sorry for the trouble

Coronal Mass Ejections

Natural experiments for testing the GCR-atmosphere link

AERONET, SSM/I, MODIS and ISCCP data for 5 strongest Forbush decreases

Svensmark, Bondo, Svensmark, Geo. Phys. Lett., 2009 Svensmark, Enghoff, Shaviv, Svensmark, J. Geophys Res., 2016

<u>CERES instrument: The effect</u> on the energy balance

Svensmark, H., Svensmark, J., Enghoff, M.B., Shaviv, J. N., *Sci Rep* **11**, 19668 (2021)

<u>CERES instrument:</u> The effect on the energy balance

Shortwave

After cosmic ray change (One week average)

Svensmark, H., Svensmark, J., Enghoff, M.B., Shaviv, J. N., *Sci Rep* **11**, 19668 (2021)

Experiments and observations suggest that aerosols grow to Cloud Condensation Nuclei

NGC 2516, 150 million old

Pleiades 200 myr old ~ 1000 stars Distance from solar system ~150 pc

SN activity and glaciations during the last 500 Myr

Proxy temperature and supernova activity during 200 Myr

Svensmark, Mon. Not. R. Astron. Soc., 423, 1234-1253 (2012)

AGU ADVANCING EARTH AND SPACE SCIENCE

Geophysical Research Letters[®]

16 January 2022 · Volume 49 · Issue 1

Sedimentary mountains (Grand Canyon)

One can estimate the fraction of organic material buried as sediments

Organic burial in sediments and supernova activity

Galactic cosmic rays and burial of organic matter during the history of Earth

Galactic cosmic rays and burial of organic matter The source of oxygen Proterozoic Archean Phanerozoic 2.0 WHY 1.5 GCR(t)/GCR(0) Galactic cosmic rays and the source of oxygen 1.0 0.5 Oxygen 0.0 - I - - --3500 -3000 -2500 -2000 -1500 -1000 -500 0 **Photosynthesis** Time [Ma] Proterozoic Phanerozoic Archean $6CO_2 + 6H_2O \leftrightarrow C_6H_{12}O_6(glucose) + 6O_2$ 0.30 0.25 0.20 Burial of organic 0.15 matter in sediments 0.10 0.05 0.00Supernovae have helped the production of oxygen. -3500 -3000 -2500 -2000 -1500 -1000 -500 0 Oxygen is needed for the evolution of complex life

Age [Ma]

Sagittarius dwarf galaxy

Tomás Ruiz-Lara et al. "The recurrent impact of the Sagittarius dwarf on the Milky Way star formation history", Nature Astronomy, 2020

Gaia Data Release 2 (DR2) data

Conclusions

Variations in cosmic rays are associated with changes in Earth's climate. Strong empirical evidence on all time scales

Evidence suggests that clouds link to cosmic ray variations

- Solar activity affects the climate (days to 10.000 years)
- Supernova activity affects climate (million of years)
- Burial of organic matter follows variations in supernovae history. Which is the source of oxygen and therefore fundamental for the evolution of complex life