Lichtblick: European Association of Geoscientists & Engineers (EAGE) veröffentlicht Kritik am Klimaalarmismus

Siehe unsere Zusammenfassung “Pioniere des Klimarealismus: Die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)“.

Zur gleichen Zeit glaubte auch ein Heidelberger Klimawissenschaftler an die Überzeugungskraft von harten Fakten und wagte es doch tatsächlich, die starke natürliche Variabilität der vorindustriellen Zeit und die erkannten Muster in die Diskussion einzubringen. Wiederum wurden die Kampfhunde losgelassen und eine mediale Vernichtungskampagne initiiert. Der Fall Mangini wurde schnell erledigt (siehe “Prof. Augusto Mangini – Ein Pionier des Klimarealismus“), der Querulant aus dem Weg geschafft.

Ähnlich erging es dem Bochumer Geochemiker Jan Veizer. Wikipedia fasst Veizers Beitrag wie folgt zusammen:

Zusammen mit anderen Wissenschaftlern verglich Veizer die rekonstruierten historischen Meereswassertemperaturen der letzten 545 Millionen Jahre mit der Variabilität der kosmischen Strahlung, die die Erde erreicht, sowie den historischen CO2-Konzentrationen in der Erdatmosphäre. Nach einem vorsichtig formulierten Artikel in Nature im Jahr 2000,[4] den er zusammen mit Yves Godderis und Louis M. François verfasste, können die Resultate in Übereinstimmung gebracht werden, wenn die CO2-Konzentration in der Erdatmosphäre nicht die Haupttreiber des Klimawandels in geologisch relevanten Zeiträumen sind, zumindest für ein Drittel der phanerozoischen Periode, es sei denn, die rekonstruierten CO2-Konzentrationen seien nicht zuverlässig. 2003 publizierte Veizer zusammen mit dem israelischen Astrophysiker Nir J. Shaviv einen Artikel in der Zeitschrift Geological Society of America.[5] Darin bekräftigt Veizer einen reduzierten (gekappten) Einfluss von CO2 auf den Klimawandel und schreibt der kosmischen Strahlung eine größere Bedeutung zu. Obwohl der Mechanismus noch nicht voll verstanden sei, zeigten die empirischen Daten eine geeignete Übereinstimmung. Der Artikel wurde, unter anderem von Vertretern des Potsdamer Instituts für Klimafolgenforschung scharf kritisiert.[6] Veizer and Shaviv betonten die Anwendbarkeit ihrer Forschung auf das heutige Klima wie auch ihren Respekt für Forscher, die sich auf der Linie des IPCC befinden. Veizer und Shaviv erhalten als Wert für die Klimasensitivität einen Wert von 1,5 °C; das IPCC hält dagegen Werte zwischen 2 und 4,5° für wahrscheinlich, mit einem besten Schätzwert von 3°.

Dies ist übrigens genau die CO2-Klimasensitivität, die auch wir 2012 in unserem Buch “Die kalte Sonne” annahmen, wofür auch wir vom Klimaestablishment seinerzeit heftig abgestraft wurden. Zwei Jahre später wurde Sebastian Lüning von einem Vorstandsmitglied einer großen deutschen geowissenschaftlichen Organisation aufgefordert, seine Thesen in einem Artikel für die Mitgliederzeitschrift vorzustellen. Lüning erstellte das eingeladene Manuskript – und wartete. Und wartete und wartete. Die vormals so emailfreudige Kontaktperson aus der Verbandsleitung schaltete plötzlich auf stumm. Nachfragen zwecklos. Schließlich veröffentlichten wir den Artikel einfach hier im Blog (“Klimawandel in Deutschland: Eine geowissenschaftliche Betrachtung“). Zu gerne hätten wir gewusst, was hier hinter den Kulissen passiert ist. Wer hat sich hier quer gestellt? Gab es politischen Druck, vielleicht Drohungen hinsichtlich der weiteren Karriereentwicklung der Beteiligten? Man weiß es nicht.

Im November 2015 gab es jedoch Grund zur kurzzeitigen Freude. Die 19.000 Mitglieder starke europäische geowissenschaftliche Vereinigung EAGE (European Association of Geoscientists & Engineers) veröffentlichte in ihrer Mitgliederzeitschrift First Break einen Beitrag ihres Mitglieds Bob Heath: Hier der erste Absatz (der Rest des Beitrags leider nur für Mitglieder bzw. hinter einer 30 Euro schweren Paywall):

,Unsettled‘ Wissenschaft

Die wissenschaftliche Methode und Kohlenwasserstoff-Manie.

Die wissenschaftliche Methode ist vielleicht die größte Errungenschaft der Menschheit. Sie legte den Grundstein für die industrielle Revolution, die für so Manchen den Lebensstandard auf zuvor unvorstellbare Niveaus verbessert hat. Es führte zur Ausbeutung fossiler Treibstoffe, die weitaus mehr Energie für eine Einzelperson zur Verfügung stellten als jemals zuvor, was sich sehr förderlich auf den Wohlstand auswirkte. Es gibt direkte Relationen zwischen Pro-Kopf-CO2-Output und Indizes des Lebensstandards, als da wären Kindersterblichkeit/Lebenserwartung sowie verfügbare Mittel für den Umweltschutz. Fast jeder soziale Fortschritt basierte auf Strom, der mittels fossiler Treibstoffe erzeugt worden war, die aufzufinden unsere Aufgabe ist, und trotz der kostspieligen Bemühungen hin zu Erneuerbaren stammen etwa 87% der Weltenergie aus Kohlenwasserstoffen. Seit 150 Jahren geistern Behauptungen durch den Raum, dass fossile Treibstoffe ihren Höhepunkt überschritten hätten. William Jevons prophezeite in den sechziger Jahren des 19. Jahrhunderts, dass UK sehr schnell die Kohle ausgehen würde, was ihn folgern ließ, dass die seinerzeit glücklichen Lebensumstände des Landes nur von kurzer Dauer sein würden. Aber zum großen Teil dank der Geowissenschaftler gibt es immer noch Vorräte im Überfluss. Trotz der Dämonisierung seitens der Umweltaktivisten wird die Zivilisation in absehbarer Zukunft zum allergrößten Teil von Kohlenwasserstoffen abhängig bleiben, was uns weiterhin von den Malthusianischen Grenzen fernhält. Man stelle sich eine Welt vor, in der Jevons recht gehabt hätte und uns die Kohlenwasserstoffe während der Regierungszeit von Queen Victoria ausgegangen wären. Würde sich der Lebensstandard dann auch immer weiter verbessert haben, und wie hätte in diesem Falle die Umwelt gelitten?

In dem erfrischenden achtseitigen Artikel legt Heath die bekannten klimaskeptischen Argumente vor. Interessant auf Seite 101 der Hinweis auf Mauscheleien im 2. IPCC-Bericht (SAR):

Im Zweiten Zustandsbericht wurden viele zentrale wissenschaftliche Abschnitte gelöscht, z. B. die Aussage, dass „bis heute keine Studie (die beobachtete Klimaänderung) teilweise oder ganz anthropogenen Gründen positiv zugeordnet hat“. Das IPCC hat diese Löschungen nicht bestritten, sondern gesagt, dass es unter Druck der Regierungen stand. Am Schluss hieß es: „die Beweise alles in allem zeigen einen erkennbaren menschlichen Einfluss auf das globale Klima“. Prof. Frederick Seiz schrieb: Während meiner über 60 Jahre als Mitglied der amerikanischen wissenschaftlichen Gemeinschaft einschließlich meiner Tätigkeit als Präsident sowohl der National Academy of Sciences als auch der American Physical Society habe ich niemals eine schlimmere Kaperung des Begutachtungs-Prozesses erlebt als das, was zu diesem IPCC-Bericht führte“.

Heath empfiehlt die Lektüre der IPCC-Broschüre von 1997

“AN INTRODUCTION TO SIMPLE CLIMATE MODELS USED IN THE IPCC SECONDASSESSMENT REPORT”

[Übersetzung des Titels: Eine Einführung in im Zweiten Zustandsbericht verwendeten einfache Klimamodelle]

Er schreibt weiter:

Aber im AR3 wurde eingeräumt, dass „wir es mit einem gekoppelten nichtlinearen chaotischen System zu tun haben. Daher sind langfristige Prophezeiungen der Zustände des Klimas nicht möglich“. Dabei wurde die aberwitzige Hypothese aufgestellt, dass die natürliche Variation vollständig geklärt ist.

Nachzulesen im Original des 3. IPCC-Berichts in Kapitel 14.2.2.2. Natürlich hatte sich die EAGE vor Publikation des Beitrags abgesichert und dem Artikel einen Disclaimer vorangestellt:

EAGE möchte klarstellen, dass in dieser Studie geäußerte Meinungen jene des Autors sind und nicht die Haltung der Association zum Klimawandel reflektieren“.

Es ist vermutlich nicht falsch anzunehmen, dass ein großer Teil der EAGE-Mitglieder sich trotzdem mit dem Artikel von Heath identifizieren konnte. Man kann weiter annehmen, dass es eine große Anzahl von Leserbriefen zum Thema gegeben haben muss, die jedoch bis auf zwei Zuschriften in First Break 1/2016 nicht abgedruckt wurden. Hierzu gehört auch ein Leserbrief des Hamburger Geophysikers Uli Weber, der folgendes an die EAGE schrieb:

Sehr geehrter Herausgeber,

vielen Dank an Bob Heath und das für die Veröffentlichung verantwortliche Team bei der EAGE für den brillanten Artikel über Klimawandel in First Break 11-2015. Als ein Erkundungs-Geophysiker in der E&P-Industrie habe ich in den achtziger Jahren an die wissenschaftliche Vorgehensweise im Bereich Klimawissenschaft geglaubt und den Medienhype für das übliche Verhalten beim Beschreiben extremer Ergebnisse gehalten. In den neunziger Jahren habe ich das Fehlen fundierten paläoklimatischen Wissens in der Medien-Repräsentation bedauert, als man der Öffentlichkeit die befürchtete Klimakatastrophe vortrug. Und nach dem Jahr 2000 musste ich erkennen, dass in den Klimawissenschaften erwiesene paläoklimatische Fakten geleugnet wurden und das „Ende der Diskussion“ für ihre „settled Wissenschaft“ zum Klimawandel proklamiert wurde. Dies brachte mich dazu, nach meinem Rückzug ein Buch zu schreiben über die Verbindung zwischen Geologie und der Abfolge des Klimas, was, ehrlich gesagt, niemand lesen wollte.

Während meiner gesamten Profi-Tätigkeit in der Industrie war das Märchen von der zukünftigen Klimakatastrophe eine permanente Quelle von Gelächter unter den Geowissenschaftlern. Aber dieses Gelächter wurde nicht der geängstigten Öffentlichkeit vermittelt. Im Gegenteil, im Zuge der wachsenden Panik in der Öffentlichkeit über die zukünftige Klimaentwicklung fühlten sich die Geowissenschaftler mit ihren wissenschaftlichen Argumenten zunehmend isoliert, sogar in ihrem privaten Umfeld. Heute wurden politische Maßnahmen bereits umgesetzt, Milliarden Dollar sind ausgegeben worden für abartige Computermodelle, und Organisationen haben sich manifestiert, um die angepeilte Dekarbonisierung der Welt durchzusetzen. Angesichts der zukünftigen Zerschlagung unserer Industrie durch Klimaalarmisten sind wir im Zweifel, ob wir unser wissenschaftliches Wissen über das Paläoklima angemessen einer verängstigten Bevölkerung erklärt haben.

Freundliche Grüße

Ulrich O. Weber

Link: http://www.kaltesonne.de/lichtblick-european-association-of-geoscientists-engineers-eage-veroffentlicht-kritik-am-klimaalarmismus/

Anmerkung: Dieser Beitrag ist zuerst auf dem Blog „Die Kalte Sonne“ hier erschienen. Übersetzung der englischen Passagen von Chris Frey EIKE




Sonne macht Klima: Neues aus Europa

Die Wissenschaftler fanden charakteristische Zyklizitäten, darunter die bekannten solaren Eddy- (1000 Jahre), Suess-de Vries- (200 Jahre) und Gleissberg- (90 Jahre) Zyklen:
Auswirkungen des solaren Antriebs und der Nordatlantischen Oszillation auf das Klima im kontinentalen Skandinavien während des Holozäns
Sedimentablagerungen aus den Nautajärvi and Korttajärvi-Seen in Finnland, die die letzten 10.000 Jahre abdecken, zeigen Beweise für Klima- und Umweltoszillationen im Zeitbereich von vielen Jahrzehnten bis zu Jahrtausenden. Wir haben zwei unabhängige Verfahren angewendet, um periodische Erscheinungen aus diesen Zeitreihen zu extrahieren und ihre statistische Zuverlässigkeit abzuschätzen. Analysen zeigten, dass jahreszeitliche Sedimentflüsse mit Umweltveränderungen korrespondieren sowie mit statistisch signifikanten Periodizitäten von 1500 bis 1800, 1000, 600 bis 800, fast 300, fast 200, 150 bis 170, fast 90 und 47 Jahren. Sie zeigen eine variable Kohärenz mit verschiedenen klimatreibenden Faktoren und anderen Paläo-Proxyaufzeichnungen auf der Nordhemisphäre. Die Ergebnisse zeigen, dass das Winterklima im Holozän im kontinentalen Skandinavien durch eine Kombination vieler Faktoren getrieben worden ist, zumindest durch die Sonnenaktivität und von atmosphärischen Zirkulationsmustern im Bereich Nordatlantik-Europa, wobei die Einflüsse mit der Zeit variieren.
Insbesondere der 1000-Jahres-Zyklus tritt hervor. In der Discussion schreiben die Autoren:
Die Identifizierung des 1000-Jahre-Zyklus‘ zeigt, dass der solare Antrieb möglicherweise klimatische und umweltliche Fluktuationen im kontinentalen Skandinavien während des Holozäns ausgelöst hat.
Auch im Bereich der Nordsee gibt es neue Hinweise auf eine solare Klimabeeinflussung. Im Juli 2014 veröffentlichte eine Forschergruppe der Universität Mainz bestehend aus Hilmar Holland, Bernd Schöne, Constanze Lipowsky und Jan Esper im Fachblatt The Holocene eine Klimastudie auf Basis von Anwachsstreifen in Muschelschalen. Dabei deckten die Wissenschaftler die vergangenen 1000 Jahre ab. Holland und Kollegen fanden, dass das Klima immer dann besonders stark schwankte, wenn die Sonnenaktivität auf Minimalwerte absank. Dies gilt insbesondere für die solaren Maunder- und Spörer-Minima während der Kleinen Eiszeit. Hier die Kurzfassung der Arbeit:
Dekadische Klimavariabilität der Nordsee während des letzten Jahrtausends, rekonstruiert mittels bestimmter Muschelschalen auf arktischen Inseln (von der Gemeinen Islandmuschel)
Ununterbrochene und jährlich aufgelöste Aufzeichnungen des Paläoklimas sind von grundlegender Bedeutung, um die gegenwärtigen globalen Änderungen in einen Zusammenhang zu stellen. Derartige Informationen sind besonders relevant für den europäischen Bereich, wo Wetter- und Klimaprojektion immer noch eine große Herausforderung darstellen, wenn sie nicht sogar unmöglich sind. Diese Studie präsentiert die ersten genau datierten, jährlich aufgelösten und multiregionalen Chronologien aus den Schalen der Gemeinen Islandmuschel aus der Nordsee. Sie überdecken den Zeitraum 1040 bis 2010 und enthalten wichtige Informationen über supra-regionale Klimabedingungen (Wassertemperatur, ozeanische Produktivität, Wind). Das Wachstum der Muscheln variierte periodisch in Zeiträumen von 3 bis 8, 12 bis 16, 28 bis 36, 50 bis 80 und 120 bis 140 Jahren. Möglicherweise zeigt dies eine enge Verbindung mit der Nordatlantischen Oszillation, ozean-internen Zyklen im Nordatlantik, kontrolliert durch Ozean-Atmosphäre-Kopplungen sowie der Atlantischen Multidekadischen Oszillation. Zunehmende Klima-Instabilität, das heißt eine stärkere quasi-dekadische Variabilität, scheint verbunden mit dem Vorherrschen atmosphärischer Antriebe und signifikant geringeren Einstrahlungs-Phasen (d. h. Spörer- und Maunder-Minima). Eine gesteigerte klimatische Variabilität über kürzere Zeiträume wurde ebenfalls beobachtet, und zwar während besonders warmer Phasen oder Verschiebungen (z. B. während der ,Mittelalterlichen Klimaanomalie‘ [?] und seit etwa 1970). Stabilere Klimabedingungen, das heißt verlängerte Warm- oder Kaltphasen (Mittelalterliche Klimaanomalie, Kleine Eiszeit) fielen jedoch zusammen mit einem Vorherrschen multidekadischer ozeanischer Zyklen. Ob die Anzahl von Sonnenflecken und eine höhere Klimavariabilität ursächlich zusammenhängen und welche Prozesse und Abläufe dem zugrunde liegen, ist nicht Gegenstand dieser Studie.
Gehen wir nun einige hundert Kilometer nach Osten, nach Polen. Ein Team um Ivan Hernández-Almeida nahm sich im Nordosten des Landes ebenfalls die Klimageschichte des letzten Jahrtausends vor. In einem Artikel, der Mitte August 2015 in den Quaternary Science Reviews erschien, berichteten die Wissenschaftler von starken natürlichen Klimaschwankungen und einer deutlichen solaren Beeinflussung. Hernández-Almeida fanden eine klare Gliederung in Mittelalterliche Wärmeperiode, Kleine Eiszeit und Moderne Wärmeperiode. Dabei fielen die Winter vor 1000 Jahren während der Mittelalterlichen Wärmeperiode sogar milder aus als heute (Abbildung 1). In den letzten 50 Jahren ist im Datensatz zudem eine Verschärfung der polnischen Winter zu erkennen. Im Folgenden die Kurzfassung der Arbeit:
Eine auf den Goldbraunen Algen basierende quantitative Rekonstruktion der Strenge von Wintern aus Tonsedimenten in Seen in Nordostpolen während des letzten Jahrtausends sowie deren Beziehung zur natürlichen Klimavariabilität
Zellen von Algen werden als starke Proxys zur Bestimmung der Temperatur in der kalten Jahreszeit angesehen. In dieser Studie betrachten wir die Beziehung zwischen Algen-Ansammlungen und der Anzahl von Tagen mit einer Temperatur unter 4°C (DB4°C) im Epilimnion* eines Sees in Nordpolen, um eine Transfer-Funktion zu entwickeln und die Strenge der Winter in Polen für das letzte Jahrtausend zu rekonstruieren. DB4°C ist eine Klimavariable abhängig von der Länge des Winters. Bestimmte Verfahren [Multivariate ordination techniques]wurden angewendet, um die Verteilung von Algen in Sedimenten von 37 Flachlandseen zu studieren, verteilt entlang einer Vielzahl umweltlicher und klimatischer Gradienten in Nordpolen. Von allen gemessenen Umweltvariablen, stufenweiser Auswahl der Variablen und individuellen Freisetzungs-Analysen (RDA) ergab die Variable DB4°C als die wichtigste Variable für Algen … . Eine quantitative Transferfunktion wurde erzeugt, um DB4°C aus Sedimentablagerungen zu schätzen mittels der partiellen Regression kleinster Quadrate. Das Zwei-Komponenten-Modell (PLS-2)enthielt einen Koeffizienten der Bestimmung von Rcross = 0,58 mit der Wurzel aus dem mittleren quadratischen Fehler der Vorhersage (RMSEP) von 3,41 Tagen (auf der Grundlage von ,einen auslassen‘). [?] Die sich daraus ergebende Transfer-Funktion wurde angewendet auf einen jährlich unterteilten Sediment-Bohrkern aus dem Lake Żabińskie. Er erlaubte eine neue, sub-dekadische Rekonstruktion von DB4°C mit hoher chronologischer Genauigkeit für den Zeitraum vom Jahr 1000 bis 2010. Während des Mittelalters (Jahre 1180 bis 1440) waren die Winter allgemein kürzer (wärmer) außer während einer Dekade mit sehr langen und kalten Wintern um das Jahrzehnt von 1260 bis 1270 (im Anschluss an den Vulkanausbruch im Jahre 1258). Im 16. und 17 Jahrhundert sowie zu Beginn des 19. Jahrhunderts war es zu sehr langen und strengen Wintern gekommen. Der Vergleich mit anderen Rekonstruktionen der kalten Jahreszeit in Europa sowie atmosphärische Indizes hier zeigen, dass ein großer Teil der Winter-Variabilität (rekonstruierte DB4°C) dem Wechselspiel geschuldet ist zwischen den Oszillationen der zonalen Strömungen, die von der North Atlantic Oscillation (NAO) gesteuert werden, sowie dem Einfluss kontinentaler Antizyklonen (Sibirisches Hoch, Bedingungen Ostatlantik/Westrussland). Unterschiede zu anderen europäischen Aufzeichnungen werden geographischen klimatologischen Unterschieden zugeordnet zwischen Polen und Westeuropa (tief liegende Länder; Alpen). Der erstaunliche Gleichlauf zwischen der Kombination vulkanischer und solarer Antriebe sowie die DB4°C-Rekonstruktion vor dem 20. Jahrhundert zeigen, dass das Winterklima in Polen hauptsächlich auf eine natürlich angetriebene Variabilität reagiert (vulkanisch und solar). Der Einfluss von Variabilität ohne Antrieb ist gering.
[*Das Wort habe ich noch nie gehört. Bei WIKIPEDIA steht erläutert, was das ist: Das Epilimnion (Epilimnial) nennt man in der physikalischen Limnologie die obere erwärmte und stark bewegte Wasserschicht in einem geschichteten stehenden Gewässer. Das Epilimnion ist durch die Sprungschicht, das Metalimnion, von der unteren Wasserschicht, dem Hypolimnion getrennt. Quelle und Weiteres. Anm. d. Übers.]

Abbildung 1: Schwankungen in der Härte der polnischen Winter während der letzten 1000 Jahre. Aufgetragen ist die Anzahl der Tage mit Temperaturen unter 4°C. Ausschlag nach unten zeigte strenge Winter, Ausschlag nach oben milde Winter an. Aus: Hernández-Almeida et al. 2015.
Auf unserem europäischen Streifzug durch die aktuelle Literatur zur Klimawirkung der Sonne geht es jetzt an den Südwestzipfel des Kontinents. In Portugal untersuchte eine Forschergruppe um Santos et al. die Temperaturgeschichte der letzten 400 Jahre. Zum Wissenschaftlerteam gehört unter anderem auch Eduardo Zorita vom Helmholtz-Zentrum in Geesthacht. Im Fachblatt Climate of the Past berichten Santos und Kollegen über klare klimatische Auswirkungen der solaren Maunder und Dalton Minima auf das Temperaturgeschehen:
Neue Erkenntnisse aus der rekonstruierten Temperatur in Portugal während der letzten 400 Jahre
Die Konsistenz einer bestehenden rekonstruierten jährlichen Temperaturreihe (Dezember bis November) für das Gebiet um Lissabon ab dem Jahr 1600 basiert auf einer europaweiten Rekonstruktion, erzeugt aus: 1) fünf lokalen Tiefenprofilen der Temperatur aus Bohrlöchern, 2) synthetische Temperatur-Tiefenprofile, erzeugt sowohl aus rekonstruierten Temperaturen als auch zwei regionalen Paläoklima-Simulationen in Portugal, 3) instrumentellen Datenquellen im 20. Jahrhundert und 4) Temperaturindizes aus dokumentarischen Quellen zum Ende des Maunder-Minimums (1675 bis 1715). Die geringe Variabilität der rekonstruierten Temperatur in Portugal ist nicht ganz konsistent mit lokalen Tiefen-Temperaturprofilen aus Bohrlöchern und mit der simulierten Reaktion der Temperatur in zwei regionalen Paläoklima-Rekonstruktionen, getrieben durch Rekonstruktionen verschiedener Klimatreiber. … Weitere Kalibrierungen zeigen die klaren Fußabdrücke des Maunder- und des Dalton-Minimums, die allgemein mit Änderungen der Sonnenaktivität in Verbindung gebracht werden sowie mit explosiven Vulkanausbrüchen. …
Schließlich sei noch auf einen Artikel aus Österreich von Auer und Kollegen hingewiesen, der im Februar 2015 in Climate of the Past erschien. Die Forscher untersuchten eine 17 Millionen Jahre alte Sedimentabfolge in den Alpen. Dabei stießen sie im Rahmen einer hochauflösenden paläoklimatischen Untersuchung auf eine stark ausgeprägte natürliche Klimavariabilität und charakteristische solare Zyklen des Gleissberg und Suess-de Vries Typs. Auer und Kollegen schlussfolgern, dass das Klima des Miozäns maßgeblich durch solare Aktivitätsschwankungen gesteuert wurde. Im Folgenden die Kurzfassung der Studie:
Zwei ausgeprägte dekadische und jahrhundertliche Zyklizitäten trieben die Intensität maritimer Auftriebe von Tiefenwasser sowie den Niederschlag zum Ende des Frühen Miozäns in Mitteleuropa.
Innerhalb einer 5,5 Meter dicken Aufeinanderfolge von Sedimenten aus den Karpaten im nordalpinen Voralpenland (NAFB; Österreich), datiert zur CNP-Zone NN4, wurde kontinuierlich ein hoch aufgelöster Bereich aufgezeichnet. Einhundert Testmengen wurden mit einer Auflösung von etwa 10 mm (= etwa 17 Jahre) pro Schicht gezogen und analysiert mittels eines integrierten Multiproxy-Verfahrens. Frühere Analysen der Geochemie und Kalkablagerungen deuten auf kleinräumige, kurzzeitige Variationen der Umweltbedingungen in Paläo-Zeiten wie etwa Schichtenbildung in Wassersäulen, primäre Produktivität, Flüsse organischen Materials, Sauerstoffanreicherung tieferer Wasserschichten, Süßwasser-Zufluss und Änderungen des relativen Meeresspiegels. Die Ergebnisse zeigen eine hochdynamische dünne maritime Schicht, die Gegenstand häufiger Umweltänderungen im Zeitmaßstab von Jahrzehnten und Jahrhunderten war. Zeitreihen-Analysen von neun verschiedenen Proxy-Datensätzen wurden einer REDFIT-Analyse unterzogen, um eine möglicherweise zyklische Natur dieser Variationen zu erkennen. Die Analysen zeigten, dass unterschiedliche Proxys für Niederschlag, Intensität von Tiefenwasser-Aufwallung und Gesamt-Produktivität wahrscheinlich von unterschiedlichen Zyklizitäten getrieben werden. Eine Best-Fit-Adjustierung der wahrscheinlichen Sedimentations-Raten innerhalb des hoch aufgelösten Bereiches führte zu Periodizitäten, die gut zum niedrigeren (ca. 65 Jahre) und höheren (ca. 113 Jahre) Gleissberg-Zyklus ebenso wie zum Suess/deVries-Zyklus (ca. 211 Jahre) passen. Der Abschnitt überdeckt einen Zeitraum von etwa 1190 Jahren auf der Grundlage der Korrelation mit solaren Zyklen, was zu einer geschätzten Sedimentationsrate von 575 mm pro 1000 Jahre führte. Zum ersten Mal sind kurzfristige Klima-Variabilitäten im dekadischen bis jahrhundertlichen Zeitmaßstab aufgelöst in dünnen maritimen Sedimenten. Die Ergebnisse deuten auf eine enge Relation zwischen Klima-Variabilität und solarem Antrieb während der Zeit des Late Burdigalian. Außerdem, wenn man akzeptiert, dass diese Zyklizitäten wirklich solaren Ursprungs sind, würde dies zeigen, dass der Niederschlag von den beiden Gleissberg-Zyklen getrieben wurde, während das Aufwallen vom Suess-Zyklus getrieben wurde. Außerdem wurden Proxys der primären Produktivität durch beide Zyklen beeinflusst.
Beitrag zuerst erschienen bei der „Kalten Sonne“ hier. Übersetzung der englischen Passagen von Chris Frey EIKE
Anmerkung EIKE Redaktion: Die kalte Sonne hatte bereits am 20.August 2015 (hier) die EIKE-News vom 12.August 2015 (hier) über eine Publikation von Lüdecke, Weiss, Hempelmann abgedruckt. Diese Arbeit erschien in der Fachzeitschrift "Climate of the Past Discussion" der Europäischen Geophysikalischen Union (egu) (hier). In ihr wurde der Klimaeinfluss des De Vries /Suess Sonnenzyklus untersucht. Diese Arbeit ist in der obigen Zusammenfassung der neuesten Publikationen zum Klimaeinfluss der Sonne leider nicht mit aufgeführt.




Was gibt es Neues von der Sonne? Eine Übersicht zu aktuellen Arbeiten im Themenkomplex Sonne-Klima

Mit etwas Abstand ist dem einen oder anderen IPCC-Klimakämpfer die überzogene Reaktion vielleicht sogar peinlich geworden. Mittlerweile wird immer klarer, dass man die klimatische Rolle der Sonne wohl lange Zeit unterschätzt hatte. Hierauf weisen auch aktuelle Studien hin, die wir in den kommenden Tagen hier im Blog zusammenfassen möchten. Was gibt es eigentlich Neues von der Sonne?

Erste Anlaufstelle zur Literaturrecherche ist die Webseite „Club de Soleil“ die vom Klimaforscher Maarten Blaauw von der Queen’s University of Belfast betrieben wird. Allein für 2015 hat Blaauw bis jetzt 23 Arbeiten vorgestellt, und ein Drittel des Jahres steht sogar noch aus. Hochaktuell sind auch zwei zusammenfassende Arbeiten von David Douglass und Robert Knox, die im April 2015 in Physics Letters A erschienen sind. Die Autoren fanden ein klares solares Signal in den Ozeantemperaturen:

Teil 1:

Die Sonne ist der Klima-Schrittmacher I: Wassertemperatur des tropischen Pazifiks

Zeitreihen der Wassertemperatur im tropischen Pazifik enthalten Segmente, die sowohl ein jährliches Signal als auch ein solches von zwei oder drei Jahren zeigen. Beide sind verbunden mit dem jährlichen Sonnenzyklus. Drei solche Segmente gab es zwischen 1990 und 2014. Es wird vermutet, dass diese einem solaren Antrieb geschuldet sind mit einer Frequenz von 1,0 pro Jahr. Diese periodischen Features findet man auch in globalen Klimadaten (folgende Studie). Die Analyse nutzt einen zwölf-Monats-Filter, der eindeutig jahreszeitliche Effekte aus den Daten separiert. Dies ist wichtig zum Verständnis des Phänomens El Niño/La Niña.

Teil 2:

Die Sonne ist der Klima-Schrittmacher II: globale Ozean-Wassertemperatur

In Teil I war vom äquatorialen Pazifik und seiner Wassertemperatur die Rede, hier soll es jetzt um die globalen Ozeane gehen mit einem Vertikalprofil von 0 bis 700 m bzw. o bis 2000 m Tiefe. Der El Niño/La Niña-Effekt diffundiert in den Weltozeanen mit einer Verzögerung von etwa zwei Monaten.

Siehe auch Besprechung der Arbeiten auf WUWT.

Im April 2014 wies der Blog The Hockey Schtick darauf hin, dass eine zeitliche Aufsummierung der Sonnenaktivität möglicherweise ein viel besserer Ansatz für den Vergleich mit der Temperaturentwicklung darstellt. Begründet werden kann dies durch die große Trägheit des Klimasystems. Plotten Sie es hier einmal selber. Das Ergebnis ist erstaunlich.

Interessant ist auch eine chinesische Arbeit aus dem Juni 2014 über das Science China Press die folgende Pressemitteilung herausgab:

Beeinflusst die Sonnenaktivität die globale Erwärmung der Erde?

Eine neue Studie demonstriert die Existenz signifikanter Resonanz-Zyklen sowie hohe Korrelationen zwischen Sonnenaktivität und der gemittelten Temperatur an der Erdoberfläche über Jahrhunderte. Dies bietet einen neuen Weg zur Ergründung des Phänomens der globalen Erwärmung während der letzten Jahre.

Interessant ist auch eine chinesische Arbeit aus dem Juni 2014 über das Science China Press die folgende Pressemitteilung herausgab:

Die Studie mit dem Titel „Periodicities of solar activity and the surface temperature variation of the Earth and their correlations” wurde auf chinesisch im Chinese Science Bulletin im Jahre 2014 veröffentlicht mit Dr. Zhao Xinhua und Dr. Feng Xueshang von der Chinese Academy of Sciences als Mitautoren. Dabei wird das Verfahren der Kleine-Welle-Analyse [?] und das Verfahren der cross correlation method [?] angewendet, um die Periodizitäten der Sonnenaktivität und der Erdtemperatur zu untersuchen, ebenso wie deren Korrelationen während der vergangenen Jahrhunderte.

Die globale Erwärmung ist derzeit eines der am heißesten diskutierten Themen. Das IPCC behauptete, dass die Freisetzung anthropogener Treibhausgase zu 90% oder mehr für die beobachteten gestiegenen globalen mittleren Temperaturen der letzten 50 Jahre verantwortlich war. Allerdings hört die Debatte um die Gründe der globalen Erwärmung niemals auf. Forschungen zeigen, dass die gegenwärtige Erwärmung nicht über die natürlichen Klimafluktuationen hinausgeht. Die Klimamodelle des IPCC scheinen den Einfluss natürlicher Faktoren zu unterschätzen, während sie denjenigen menschlicher Aktivitäten überschätzen. Die Sonnenaktivität ist ein wichtiger Bestandteil der natürlichen Klimatreiber. Daher ist es wichtig, den Einfluss der Solarvariabilität auf das Erdklima im langfristigen Zeitscale zu untersuchen.

Diese innovative Studie kombiniert die gemessenen Daten mit den rekonstruierten Daten, um die Periodizitäten der Sonnenaktivität im Verlauf von Jahrhunderten hervorzuheben sowie deren Korrelationen mit der Temperatur der Erde. Die erzielten Ergebnisse zeigen, dass die Sonnenaktivität und die Temperatur der Erde signifikante Resonanzzyklen aufweisen, und dass die Temperatur der Erde periodische Variationen ähnlich denen der Sonnenaktivität durchläuft. Diese Studie impliziert auch, dass das „moderne Maximum“ der Sonnenaktivität sehr gut mit der jüngsten globalen Erwärmung der Erde korreliert. … Einer der Begutachter drückte es so aus: „diese Arbeit bietet eine mögliche Erklärung für die globale Erwärmung“.

ZHAO X H, FENG X S. Periodicities of solar activity and the surface temperature variation of the Earth and their correlations (in Chinese). Chin Sci Bull (Chin Ver), 2014, 59: 1284, doi: 10.1360/972013-1089 http://csb.scichina.com:8080/kxtb/CN/abstract/abstract514043.shtml

Maliniemi und Kollegen beschrieben im August 2014 im Journal of Geophysical Research einen Zusammenhang der Wintertemperaturen auf der Nordhemisphäre mit dem Sonnenfleckenzyklus:

Räumliche Verteilung der Wintertemperaturen auf der Nordhemisphäre während verschiedener Phasen des Sonnenzyklus‘

Viele Studien der letzten Zeit haben die Variabilität des Winterklimas auf der Nordhemisphäre als zusammenhängend mit verschiedenen Parametern der Sonnenaktivität gefunden. Während diese Ergebnisse immer wieder irgendeine Art und Weise belegen, mit der die Sonne die Zirkulation in der Troposphäre und der Stratosphäre sowie die Temperaturen an der Oberfläche moduliert, gehen die Meinungen hinsichtlich des genauen Ablaufs dieses Phänomens sowie den solaren Antrieb auseinander. Unter den angeführten Treibern sind u. A. die gesamte solare Einstrahlung TSI, die solare UV-Strahlung, galaktische kosmische Strahlen und energetische Partikel der Magnetosphäre. Während einige dieser Treiber nur schwer von der sehr ähnlichen Variation eines solaren Zyklus‘ zu unterscheiden sind, zeigen andere angenommene Treiber klare Unterschiede bzgl. ihres Verlaufs während eines Sonnenzyklus‘. Zum Beispiel erreichen die geomagnetische Aktivität und Flüsse von Partikeln der Magnetosphäre einen Spitzenwert während der abnehmenden Phase eines Sonnenfleckenzyklus‘. Dies steht im Unterschied zu TSI und UV-Strahlung, die enger dem Verlauf der Sonnenflecken folgen. Durch Betrachtung von 13 solaren Zyklen (1869 bis 2009) studieren wir die Temperaturen an der Oberfläche im Winter und die Nordatlantische Oszillation NAO, und zwar während vier unterschiedlicher Phasen des Sonnenfleckenzyklus‘: Minimum, Anstieg, Maximum und Abnahme. Wir finden signifikante Unterschiede der Temperaturverteilung, was eine Modulation der Wintertemperaturen an der Oberfläche durch einen Sonnenzyklus belegt. Allerdings findet sich die eindeutigste Verteilung nicht während des Sonnenflecken-Maximums bzw. -minimums, sondern während der abnehmenden Phase, wenn die Temperaturverteilung eng mit der Verteilung während einer positiven NAO zu finden ist. Außerdem finden wir die gleiche Verteilung während der geringen Sonnenfleckenaktivität vor 100 Jahren. Dies zeigt, dass die Verteilung weitgehend unabhängig ist vom Gesamtniveau der Sonnenaktivität.

Und schließlich wollen wir noch ein Paper von Nicola Scafetta vorstellen, das im November 2014 in der Elsevier-Zeitschrift Physica A: Statistical Mechanics and its Applications erschienen ist. Es handelt sich um eine Diskussion einer Arbeit von Gil-Alana et al., in der die Autoren behauptet hatten, Sonnenaktivitätsschwankungen hätten keinen Einfluss auf das Klima. Scafetta zeigt, dass es durchaus einen Zusammenhang gibt, der jedoch komplexer ist als von Gil-Alana und Kollegen angenommen. Hier der Abstract von Scafetta‘s Diskussion:

Globale Temperatur und Anzahl der Sonnenflecken: Gibt es eine Beziehung? Ja, aber sie ist nicht linear. Eine Erwiderung auf Gil-Alana et al. 2014

Jüngst haben Gil-Alana et al. (2014) die Aufzeichnung der Sonnenfleckenzahl und die Temperaturaufzeichnung miteinander verglichen und herausgefunden, dass diese sich unterscheiden: Die Anzahl der Sonnenflecken ist charakterisiert durch einen dominanten 11-Jahre-Zyklus, während die Temperaturaufzeichnung charakterisiert zu sein scheint durch eine „Singularität“ oder einen „Pol“ in der spektralen Dichte-Funktion bei der „Null“-Frequenz. Sie zogen hieraus die Konsequenz, dass beide Aufzeichnungen charakterisiert sind durch substantiell unterschiedliche statistische fraktionale Modelle, und sie wiesen die Hypothese zurück, dass die Sonne die globalen Temperaturen signifikant beeinflusst. Ich zeige hier, 1) dass die „Singularität“ oder der „Pol“ in der spektralen Dichte-Funktion bei der „Null“-Frequenz nicht existiert – die beobachtete Verteilung leitet sich aus dem Erwärmungstrend der Temperatur nach dem Jahr 1880 ab und ist eine typische Fehlinterpretation, zu der diskrete Energiespektren nicht-stationärer Signale verleiten können; 2) dass angemessene kontinuierliche Periodogramme [?] die Angelegenheit klären und auch eine Signatur des 11-Jahre-Zyklus‘ der Sonne zeigen (Amplitude ≤0.1°C), welche seit dem Jahr 1850 eine mittlere Periode von etwa 10,4 Jahren aufweist, ebenso wie Signaturen vieler anderer natürlicher Oszillationen; 3) dass die solare Signatur in den Aufzeichnungen der Bodentemperatur nur erkannt werden kann mittels spezifischer Analyseverfahren, die die Nicht-Linearität berücksichtigen sowie die Filterung der multiplen Klimawandel-Beiträge: 4) dass der Temperatur-Erwärmungstrend nach 1880 nicht mit der Aufzeichnung der Sonnenflecken und deren 11-jährigem Zyklus verglichen oder untersucht werden kann, sondern dass dies solare Proxy-Modelle erfordert, die die kurz- und langfristigen Oszillationen plus den Beitrag der anthropogenen Antriebe zeigen, wie es in der Literatur gemacht wird. Vielfältige Belege zeigen, dass die globale Temperatur und die Anzahl der Sonnenflecken ziemlich miteinander in Beziehung stehen während verschiedener Zeiträume. Folglich werden sie charakterisiert durch zyklische fraktionale Modelle. Allerdings stehen die solaren und die Klima-Indizes durch komplexe und nicht lineare Prozesse miteinander in Beziehung. Und schließlich zeige ich, dass die Vorhersage eines semi-empirischen Modells der globalen Temperatur auf der Grundlage astronomischer Oszillationen und anthropogener Antriebe, wie sie von Scafetta seit 2009 durchgeführt werden, bislang erfolgreich waren.

Dieser Beitrag war zuerst erschienen im Blog „Die Kalte Sonne“. Der Link: http://www.kaltesonne.de/was-gibt-es-neues-von-der-sonne-eine-ubersicht-zu-aktuellen-arbeiten-im-themenkomplex-sonne-klima/

Übersetzung der englischen Passagen von Chris Frey EIKE




Rekordeisschmelze auf der antarktischen Halbinsel? Forscher haben offenbar Schwankungen in den Schneefallmengen übersehen

Ein starkes Stück. Gerade erst hat sogar das Potsdam-Institut für Klimafolgenforschung prognostiziert, dass die antarktische Gesamteismasse in den kommenden Jahrzehnten wohl anwachsen wird (“Potsdam-Institut für Klimafolgenforschung: Antarktisches Inlandeis wird im Zuge der Erderwärmung anwachsen“), da verfällt die Stuttgarter Zeitung schon wieder in altüberholte Muster. Wundert es, dass Knauer es versäumt hatte, über die PIK-Studie und das überraschende Resultat zu berichten? Stattdessen stürzt sich der Journalist auf einen Minibereich des siebten Kontinents, wo das Eis in der Tat noch schmilzt. Immerhin räumt der AWI-Mann im Artikel der Stuttgarter Zeitung auch sofort ein, dass es sich quantitativ um keine nennenswerten Massen handelt:

In Teilen der Antarktis schmilzt das Eis seit 2010 erheblich schneller als in den ersten Jahren des 21. Jahrhunderts. Geophysiker und Eisbedeckungsspezialisten wie Veit Helm vom Alfred-Wegener-Institut (AWI) in Bremerhaven wissen zwar, dass der Klimawandel die Temperaturen im Norden der Antarktischen Halbinsel rasch steigen lässt, und registrieren dort auch hohe Schmelzraten. „Dort sind aber verhältnismäßig kleine Eismassen betroffen“, erklärt der AWI-Forscher.

Haben Sie es auch bemerkt: Es wird das Jahr 2010 mit dem Beginn der 2000er Jahre verglichen. Klimatisch hat dies wenig Wert, da dies ein sehr kurzer Zeitraum ist. Natürliche Schwankungen dominieren auf diesen kurzen Zeitskalen. Knauer behauptet, die Temperaturen im Norden der Antarktischen Halbinsel würden rasch ansteigen.Das wollen wir gerne etwas genauer wissen und schauen uns die Messdaten der Faraday-Station an. Die Überraschung ist groß: In den letzten 30 Jahren ist keine größere Erwärmung zu erkennen (Abbildung 1). Wo hat Knauer seine Informationen nur her? Es würde sich für ihn wirklich einmal lohnen in die realen Daten hineinzuschauen, anstatt Behauptungen von irgendwo ungeprüft abzuschreiben.

Abbildung 1: Temperaturentwicklung auf der Antarktischen Halbinsel, gemessen an der Faraday-Station. Quelle: GISS.

Zudem versäumt die Stuttgarter Zeitung zu erwähnen, dass die nacheiszeitlichen Temperaturen der antarktischen Halbinsel 7000 Jahre lang auf dem heutigen Niveau lagen. Überrascht?

Mittlerweile wird Kritik an der alarmistischen Studie laut, selbst aus Reihen des Weltklimarats selber. So kritisierte der IPCC-Autor Andrew Shepherd von der Leeds University, dass die Autoren offenbar Änderungen in den Schneefallmengen übersehen hätten. In den irischen RTE News heißt es dazu:

Aber Andy Shepherd, ein Direktor des Centre for Polar Observation and Modelling an der University of Leeds sagte, dass ihre Berechnungen Veränderungen der Schneefälle übersehen haben könnten. „Ich glaube, dass die neue Schätzung von Eisverlusten (berechnet aus der Verdünnung des Eises) viel zu hoch sind, weil die Gletscher in diesem Bereich einfach nicht so viel schneller geworden sind“, sagte er.

Siehe auch Beitrag im Examiner. [Dieser hoch interessante Beitrag wird demnächst für das EIKE übersetzt! – Chris Frey]

————————————–

Dieser Beitrag war zuerst bei der „Kalten Sonne“ hier erschienen. Übersetzung des (kurzen) englischen Absatzes von Chris Frey EIKE.

————————————–

In diesem Zusammenhang weist das EIKE auf eine Anfrage an den AWI-Mann Helm vom 10. Juni 2015 hin, und zwar hier:http://www.eike-klima-energie.eu/klima-anzeige/awi-wissenschaftler-sieht-kuestenstaedte-durch-antarktischen-schelfeisabbruch-bedroht-verweigert-aber-antworten-auf-simple-fragen/. Die Anfrage ist bis heute nicht beantwortet worden!




Großer städtischer Wärmeinseleffekt – kleine Wirkung? Wir fragen beim Deutschen Wetterdienst nach

Abbildung 1 (rechts): Mittelwerte maximaler Temperaturdifferenzen zwischen Stadt und Umland in Europa. Quelle: klett.de.
Tim Staeger von der ARD-Wetterredaktion beschrieb in einem Beitrag vom 6. Juni 2014 sogar eine maximale Temperaturdifferenz in Berlin von bis zu 14°C (Abbildung 2):

Die Erwärmung ist umso ausgeprägter, desto näher man sich am Stadtzentrum befindet und natürlich desto größer die Stadt ist. In kleineren Siedlungen unter zehntausend Einwohnern beträgt der maximale Temperaturunterschied zwischen Innenstadt und Umland etwa 2 bis 5 Grad, bei Städten bis hunderttausend Einwohnern kann diese Differenz schon bis 8 Grad betragen und in großen Metropolen wie Berlin wurden sogar schon maximale Unterschiede von fast 14 Grad gemessen! Das sind natürlich Spitzenwerte, die vor allem in Sommernächten auftreten, nachdem sich die Innenstädte nach einer Hitzewelle bereits mehrere Tage aufheizen konnten.


Abbildung 2: Maximaler Temperaturunterscied zwischen Innenstadt und Umland. Quelle: ARD-Wetterredaktion.
Der städtische Wärmeinseleffekt (UHI) kann also enorme Ausmaße annehmen, gerade im dicht bebauten Deutschland. Da stellt sich natürlich die Frage, ob der UHI-Effekt in den offiziellen Temperaturstatistiken korrigiert bzw. abgezogen wird. Wie geht der Deutsche Wetterdienst mit diesem künstlichen, temperatursteigernden Effekt um? Einen ersten Hinweis finden wir in einem Artikel von Josef Kowatsch, der am 27. Januar 2011 auf wahrheiten.org erschien:

Der [Wärmeinseleffekt] WI ist keine konstante Größe, er ist vielmehr jahreszeitenabhängig, streng genommen sogar jeden Tag unterschiedlich, weil er zudem temperatur- und wetterabhängig ist. Außerdem ist er tags anders als nachts. Deshalb verzichtet man beim Deutschen Wetterdienst auf die Bestimmung und mathematische Berechnung des WI. Die Leiter der einzelnen Wetterstationen kennen ihren speziellen Wärmeinseleffekt auch nicht. Daher werden immer die gemessenen Temperaturen ohne Korrekturen nach Offenbach zur Zentrale des Deutschen Wetterdienstes (DWD) weitergegeben und daraus die Mittelwerte für Deutschland errechnet. […] Der WI-Anteil ist bei den vom Deutschen Wetterdienst gemessenen Jahresmittelwerten der letzten zwölf Jahre nicht berücksichtigt.

Das will nicht so recht einleuchten: Überhitzte Stadtregionen „verunreinigen“ die deutschlandweite Temperaturstatistik, und der DWD lässt diese Daten ohne mit der Wimper zu zucken einfach unkorrigiert einfließen? Das ist schwer zu glauben.
Nachgefragt beim Deutschen Wetterdienst
Auf der Suche nach Antworten finden wir auf der Webseite des Deutschen Wetterdienstes eine aufschlussreiche Beschreibung des Problems:

Voraussetzung für die Fähigkeit das Klima zu überwachen ist die – auch zukünftige – Verfügbarkeit langer Zeitreihen meteorologischer Größen, die möglichst ungestört, d.h. ausschließlich von Klimaeinflüssen, aber nicht durch messtechnische Änderungen bestimmt sind. Dies ist nicht trivial, erhöht sich doch in unseren Breiten z.B. die Temperatur, wenn eine Messstation im Laufe der Jahre von neu entstandenen Gebäuden umzingelt wird. Diese Erhöhung ist als Wärmeinseleffekt der Städte bekannt, muss aber von einem eventuell vorhandenen globalen Trend unterschieden werden können. Das heißt messen alleine genügt nicht. Man muss auch erhebliche Anstrengungen in die Sicherstellung der bestmöglichen Qualität der Messungen investieren. Und das beginnt bei der Auswahl und Pflege der Messstation selbst und reicht über die Kontrolle der Messinstrumente bis zur langfristigen und sicheren Archivierung der Daten. Ebenso wichtig sind die sogenannten Metadaten, also Informationen, welche die eigentlichen Messgrößen beschreiben. Wenn etwa unbekannt ist, wo genau eine Messung vorgenommen wurde und welche Randbedingungen herrschten, sind ernsthafte Aussagen nicht möglich.

Die deutschen Städte wachsen und wachsen – und mit ihnen der städtische Wärmeinseleffekt (UHI). Wie kann man den UHI nun von einer überregionalen Klimaerwärmung unterscheiden? Am besten wäre es doch, nur noch Messstationen in rein ländlichen Gebieten einzusetzen und alle auch nur ansatzweise vom UHI beeinflussten Stationen für die Deutschland-Klimastatistik zu ignorieren. Da auf der DWD-Webseite keine weiteren Hinweise zur Lösung des Problems zu finden sind, wenden wir uns per Email an den DWD und fragen am 29. Januar 2015 konkret nach:

Sehr geehrter DWD,

Ich interessiere mich für den Wärmeinseleffekt (WI) der Städte und habe hierzu eine Frage. Ich habe gelesen, dass die Temperaturmesswerte der einzelnen Wetterstationen an Ihre Zentrale nach Offenbach im Original unkorrigiert gemeldet werden. Ich würde gerne verstehen, inwieweit diese Messwerte in Offenbach noch hinsichtlich des Wärmeinseleffekts korrigiert werden, bevor sie in den offiziellen Statistiken und Mittelwertbildungen verwendet werden. Konkret: wird die Temperatur von städtischen Wetterstationen nach unten korrigiert oder bleibt der WI-Effekt unberücksichtigt?

Über eine Antwort würde ich mich freuen. Vielen Dank im voraus.

Mit besten Grüßen

Sebastian Lüning

Der DWD zeigt sich kooperativ und antwortet schon wenige Tage später am 2. Februar 2015:

Sehr geehrter Herr Lüning,

Vielen Dank für Ihre Nachricht. Die Temperaturwerte werden unkorrigiert, also ohne Berücksichtigung des Wärmeinseleffekts verwendet.

Mit freundlichen Grüßen

[DWD-Diplom-Meteorologin]

Eine unerwartete Einlassung: Der UHI bleibt in allen deutschen Temperaturstatistiken vollständig unberücksichtigt! Ein mulmiges Bauchgefühl erfasst uns: Wurde uns nicht gerade ein neuer Deutscher Temperaturrekord für 2014 präsentiert? Wieviel UHI steckt darin verborgen? Weshalb wurde der UHI-Aspekt in keinem der unzähligen Medienbeiträge zum Thema angesprochen? Ist der Ansatz des DWD zulässig? Wie gehen andere Wetterdienste und Temperaturdatenbanken mit diesem Problem um? Auf der IPCC-nahen Webseite von Skeptical Science erfahren wir, wie die NASA mit dem verfährt:
Korrektur des städtischen Wärmeinsel-Effektes
Bei der Zusammenstellung der Temperaturaufzeichnungen, gibt sich das GISS der NASA große Mühe, jedwede möglichen Einflüsse des städtischen Wärmeinseleffektes zu entfernen. Man vergleicht langzeitliche städtische Trends mit solchen in der näheren ländlichen Umgebung. Dann werden die städtischen Aufzeichnungen so korrigiert, dass sie zu den Werten aus ländlicher Umgebung passen. Der Prozess wird detailliert bei Hansen 2001 beschrieben. In den meisten Fällen stellte sich heraus, dass die städtische Erwärmung gering war und innerhalb der Unsicherheits-Bandbreite lag. Überraschenderweise sind 42% der Stadt-Trends relativ zu ihrer ländlichen Umgebung kühler, da Wetterstationen oftmals auf kühlen Inseln innerhalb der Stadt stehen (z. B. einer Parkanlage). Der Punkt ist, dass man sich des UHI-Problems bewusst ist und rigoros Korrekturen vornimmt bei der Analyse der Temperaturaufzeichnungen.
Im Gegensatz zum DWD nimmt die NASA also UHI-Korrekturen vor. Allerdings sollen die korrigierten Abweichungen nahezu vernachlässigbar sein, heißt es. Letztendlich kommt es also aufs Gleiche raus: Keine bedeutende UHI-Korrektur. Wie kann dies angesichts der enormen gemessenen und anerkannten UHI-Effekte sein? Wir wenden uns am 4. Februar 2015 erneut an den DWD und bitten um Aufklärung:

Sehr geehrte Frau […],

[…] Könnten Sie mir eventuell noch einen Hinweis darauf geben, wie die Verteilung der deutschen Wetterstationen hinsichtlich Stadt und Land ist? Lässt sich sagen, wie hoch der Wärmeinselanteil an der Erwärmung Deutschlands in den letzten 100 Jahren war?

Beste Grüße

Und wieder brauchten wir nicht allzu lange auf Antwort warten. Am 18. Februar 2015 schrieb uns der DWD:

Sehr geehrter Herr Lüning,

damit gemäß WMO-Anforderungen die freie Exposition der Messstationen gegenüber den meteorologischen Einflussgrößen gewährleistet wird, befindet sich der überwiegende Anteil der Wetter- und Klimastationen außerhalb von Städten, gelegentlich auch am Stadtrand. Nur einige wenige Stationen befinden sich in Stadtzentren, wie z.B. in München oder in Jena. Unsere Klimauntersuchungen zu Frankfurt am Main (siehe http://nbn-resolving.de/urn:nbn:de:101:1-201106095249 ) zeigen, dass – die Lufttemperatur in Innenstadt und Umland nahezu gleichermaßen ansteigt, wenn man von den Einflüssen kleinerer Stationsverlegungen absieht, – die Erwärmung durch den Klimawandel ein Überlagerungseffekt ist, d. h., dass der projizierte Anstieg der Lufttemperatur über Städten im Vergleich zu ihrem Umland keine statistisch signifikanten Unterschiede aufweist.

Mit freundlichen Grüßen […]

Wir erfahren vom DWD also zwei wichtige Dinge:
1) Der überwiegende Teil der deutschen Wetterstationen liegt laut DWD außerhalb der überhitzten Stadtkerne, so dass die wenigen UHI-beeinflussten Stationen statistisch kaum ins Gewicht fallen.
2) Die Erwärmungsrate ist in Stadt und Umland ähnlich. Der einzige Unterschied wäre, dass sich die Erwärmung der Stadt auf einem höheren UHI-bedingten Temperaturniveau abspielt.
Diese beiden wichtigen Punkte wollen wir näher beleuchten:
Zu 1) Stimmt es wirklich, dass die große Mehrheit aller DWD-Stationen außerhalb von UHI-beeinflussten Gebieten liegt? Haben sich nicht die Städte in den letzten 50 Jahren immer weiter ausgebreitet, so dass sich der UHI langsam aber stetig in das stadtnahe Umland vorgearbeitet und immer mehr Wetterstationen vom UHI immer stärker beeinflusst werden? Ein erster Schritt wäre es, die in der deutschen Temperaturstatistik verwendeten Wetterstationen auf Google Maps zu lokalisieren und hinsichtlich ihrer Lage zu klassifizieren. Gibt es vielleicht bereits eine genauere Klassifizierung der Stationen hinsichtlich Stadt/Land?
Zu 2) Eine ähnliche Erwärmungsrate in Stadt und Land, das sollte sich relativ leicht überprüfen lassen. Gilt dies nur für die letzten Jahrzehnte, als die Städte bereits ihren vollen UHI-Effekt erreicht haben? Wie sieht es mit den letzten 100 Jahren aus, während der sich die Städte enorm ausbreiteten und der UHI stark anwuchs? Ein Teil der langfristigen Erwärmung großer Städte müsste doch eigentlich dem UHI-Zuwachs zugerechnet werden, oder? Wenn es heute in Berlin und Umland Temperaturunterschiede von bis zu 14°C gibt, dann waren es vor 100 Jahren doch vielleicht nur 5°C. Das sollte sich in der Gesamt-Temperaturstatistik Berlins bemerkbar machen und kann nicht der „globalen“ Erwärmung zugeschlagen werden. Der DWD räumt dieses Problem selber auf seiner Webseite ein (siehe oben).
Die Fragen behalten wir erst einmal im Hinterkopf. Im Laufe unserer aktuellen UHI-Artikelserie und im Rahmen von Projekten der KFI versuchen wir sie dann zu klären.
Das sagt BEST
Schauen wir uns nun an, welche Ansichten das BEST-Temperaturprojekt der University of California in Berkeley zum Thema UHI vertritt. Im März 2013 veröffentlichte das BEST-Team auf SciTechnol ein Paper von Wickham et al., an dem auch Projektleiter Richard Muller und Judith Curry beteiligt sind. Judith Curry erklärte allerdings zwischenzeitlich, dass sie zwar Co-Autorin des Wickham-Papers ist, jedoch kaum in die Datenbearbeitung involviert gewesen sei. Die Forscher klassifizierten globale Wetterstationen an der Erdoberfläche hinsichtlich ihrer städtischen oder ländlichen Lage, wobei sie Satellitenbilder als Klassifikationshilfe heranzogen. Dabei isolierten sie eine ländliche Untergruppe der Wetterstationen, bei der ein größerer UHI-Effekt ausgeschlossen werden kann. Interessanterweise entsprach die Erwärmungsrate dieser ländlichen Stationen in den letzten 60 Jahren ziemlich genau der durchschnittlichen globalen Erwärmung, in den auch UHI-beeinflusste Stationen einfließen. Im Folgenden die Kurzfassung der Arbeit:

Einfluss von Stadtwärme auf das globale Festlands-Temperaturmittel mittels ländlicher Standorte nach der Klassifikation von MODIS

Die Auswirkung von Stadtwärme auf Schätzungen der globalen mittleren Festlands-Temperatur wird untersucht mittels Anwendung einer Klassifikation städtisch – ländlich nach MODIS-Satellitendaten in der Zusammenstellung des Temperatur-Datensatzes von Berkeley Earth. Dieser Datensatz enthält Werte von 36.869 Messpunkten aus 15 verschiedenen, öffentlich zugänglichen Quellen. Wir vergleichen die Verteilung linearer Temperaturtrends für eine ländliche Untergruppe von 15.594 Messpunkten, die entfernt von allen nach MODIS identifizierten städtischen Gebieten liegen. Während die Trendverteilungen umfassend sind, wobei ein Drittel der Stationen in den USA und weltweit einen negativen Trend aufweisen, zeigen beide Verteilungen signifikante Erwärmung. Zeitreihen der mittleren Festlands-Temperatur der Erde werden geschätzt mittels des Berkeley Earth-Verfahrens, das auf den gesamten Datensatz und die ländliche Untergruppe angewendet wird: Die Differenz zwischen diesen ist konsistent mit keiner Auswirkung eines städtischen Heizeffektes während des Zeitraumes von 1950 bis 2010 mit einer Neigung von -0,10 ± 0.24 pro Jahrhundert (95% Vertrauensintervall).


Abbildung 3: Vergleich der globalen Temperaturentwicklung auf Basis von rein ländlichen Wetterstationen (blau) und der gesamten Anzahl der Wetterstationen (rot). Quelle: Wickham et al. 2013. Es ist kein bedeutender Unterschied erkennbar.
Auf der BEST-Webseite wird folglich geschlussfolgert, der UHI hätte in statistischer Hinsicht keine große Bedeutung und könne daher vernachlässigt werden:
Ist der städtische Wärmeinseleffekt (UHI) real?
Der städtische Wärmeinseleffekt (UHI) ist real. Die Analyse von Berkeley konzentrierte sich auf die Frage, ob dieser Effekt das globale Festlands-Mittel verzerrt. Unsere diesen Punkt analysierende UHI-Studie zeigt, dass der städtische Wärmeinseleffekt hinsichtlich unserer globalen Schätzung der Festlands-Temperaturen ununterscheidbar ist von Null.
Entsprechend äußerte sich auch Richard Muller im Jahr 2012 auf The Carbon Brief:
Ich glaube, dass die Schlussfolgerung, dass der Beitrag des städtischen Wärmeinseleffektes zur Erwärmung im Wesentlichen Null ist, auf sehr soliden Füßen steht.
Nach dieser Untersuchung könnte man den Eindruck bekommen, das UHI-Mysteriosum wäre nun endgültig geklärt und der Fall könnte zu den Akten gelegt werden. Allerdings muss man dazu wissen, dass die verwendeten BEST-Temperaturdaten nicht etwa den gemessenen Rohdaten entsprechen, sondern bereits nachbearbeitet sind. Im Zuge dieser Daten-Nachbearbeitung geschehen bekanntlich wundersame Dinge, wie wir an dieser Stelle berichtet haben (siehe unsere Blogartikel „Die wunderbare Welt der Temperaturdaten-Korrekturen: Und plötzlich hatte sich der Trend ins Gegenteil verkehrt…“ und „Neues aus der wunderbaren Welt der Temperaturdaten-Korrekturen“). Insofern ist die Beweisführung der BEST-Gruppe wenig vertrauensstiftend. Tim Ball kommentierte das BEST-Datenproblem wie folgt:
Die Verwendung des Terminus‘ „Rohdaten der Temperatur“ ist irreführend. Was alle Gruppen mit diesem Terminus meinen, sind die Daten, die von individuellen Staaten an eine zentrale Agentur übermittelt werden. Unter der Schirmherrschaft der WMO ist jede Nation verantwortlich für die Einrichtung und den Betrieb von Wetterstationen unterschiedlicher Kategorien. Die von diesen Stationen gemessenen Daten sind die Rohdaten. Allerdings werden diese dann durch individuelle nationale Agenturen adjustiert, bevor sie an die zentrale Aufzeichnungsstelle übermittelt werden. (…) BEST hat diese Daten adjustiert, aber sie sind nur genauso gültig wie die Rohdaten. Beispiel: die ,offiziellen‘ Rohdaten für Neuseeland werden erzeugt von NIWA, und diese ,adjustierten‘ die ,Rohdaten‘. Den Unterschied zeigt Abbildung 4. Welchen Datensatz hat BEST herangezogen? Viele Nationen haben ähnliche Adjustierungen vorgenommen.

Abbildung 4: Temperaturentwicklung Neuseelands während der vergangenen 100 Jahre. Vergleich von Rohdaten (grün) und „korrigierten“ Daten. Quelle: Tim Ball.
Zwischenfazit
Laut DWD und BEST spielt der städtische Wärmeinseleffekt für die landes- und weltweiten Temperaturstatistiken keine große Rolle. Wir haben in diesem Artikel eine Reihe von Fragen formuliert, denen wir detailliert nachgehen wollen und die uns bei der Bewertung des DWD-/BEST-Ansatzes helfen sollen. Wir wollen dies in einer ergebnisoffenen Form tun und allein der wissenschaftlichen Logik folgen. Die übergeordnete Frage lautet: Wie können sich enorme UHI-Effekte – wie in Berlin dokumentiert – plötzlich in Luft auflösen?
Link: http://www.kaltesonne.de/groser-stadtischer-warmeinseleffekt-kleine-wirkung-wir-fragen-beim-deutschen-wetterdienst-nach/
Artikel zuerst erschienen auf dem Blog Die Kalte Sonne. Übersetzung der englischen Passagen durch Chris Frey EIKE