Kanada – und [fast] die ganze Welt geben die Grüne Agenda auf

Erneuerbare nebst deren hohen Strompreisen als Begleiterscheinung haben viele Individuen in Energiearmut getrieben und die Industrie veranlasst abzuwandern. Dies alles entlarvt die Behauptung, dass Wind und Solar die Treibstoffe der Zukunft sind, als Lüge.

China war einst das Aushängeschild der Erneuerbare-Energie-Industrie – noch vor einigen Monaten hieß es bei Bloomberg: „Chinas Investitionen in Erneuerbare lassen den Rest der Welt hinter sich“, dank deren enormen, von Subventionen gestützten Wachstums. Jetzt wirft aber auch China allmählich das Handtuch, indem Subventionen für Erneuerbare zurückgefahren werden – eine Verheißung für den Niedergang der Investitionen des Landes in den Bereich Erneuerbare. Mit der Reduktion von Subventionen für Erneuerbare in der EU verringerten sich im vorigen Jahr die Investitionen auf mehr als die Hälfte zum Zeitpunkt des Maximums vor sechs Jahren (hier). Japans Investitionen haben sich sogar innerhalb von nur drei Jahren halbiert.

Während China immer mehr Abstand von Erneuerbaren nimmt, stürzt sich das Land auf die Kohle. Einem BBC-Bericht von voriger Woche zufolge fährt China seine Abhängigkeit von heimischer Kohle um 25 Prozent nach oben mittels Bau Hunderter neuer Kohlekraftwerke zur Stromerzeugung. Sind diese erst einmal vollendet, wird die zunehmende Kohle-Kapazität äquivalent sein zur gesamten Kohle-Kapazität in den USA. Neben Kohle wird China in diesem Jahr auch zum weltgrößten Importeur von Erdgas werden, sowohl per Pipeline (20% Steigerung) als auch per Schiff (über 50% Steigerung). Bzgl. Kohle und Öl ist das Land schon jetzt der weltgrößte Importeur.

Deutschland, ein weiteres Aushängeschild bzgl. erneuerbarer Energie, folgt dem gleichen Weg der Abwicklung, werden doch Subventionen für Windmüller reduziert, während die Importe von Gas und die Verwendung heimischer Kohle zunehmen. Um diese Kohle zu fördern hat Deutschland beschlossen, eine bestehende Tagebau-Kohlemine – die größte in Europa – zu erweitern, wofür man einen 12.000 Jahre alten Wald abholzen muss. Abgerundet wird dieses Abrücken Deutschlands von Forderungen der Grünen-Lobby durch die Abschwächung von Vorschriften, welche den Autobauern auferlegten, Fahrzeuge mit geringeren CO2-Emissionen herzustellen.

Japan plant, seine ohnehin schon bescheidenen Subventionen für Erneuerbare zu beenden (hier), während der Verbrauch fossiler Treibstoffe massiv ausgeweitet wird – zu den bereits 100 bestehenden Kohle-Kraftwerken sollen weitere 40 hinzukommen. Auch UK wendet sich von Erneuerbaren ab. Dort wird erwartet, dass die Investitionen bis zum Jahr 2020 um 95% sinken werden – zugunsten der Erschließung der immensen Schiefergas-Vorräte des Landes. Und Australien beendet sein Subventionsprogramm für Erneuerbare bis zum Jahr 2020 vollständig.

Die grundlegendste Änderung jedoch erfolgte in den USA, wo die Partei der Demokraten – Anhänger der Globale-Erwärmung-Orthodoxie – zunächst die Kontrolle über den Kongress und dann die Präsidentschaft an Präsident Trump von den Republikanern verloren haben. Dieser ist ein ausgesprochener Kritiker der Globale-Erwärmung-Lobby. Als Präsident Trump sich aus dem Paris-Abkommen zurückzog zugunsten Kohle und anderer, auf Kohlenstoff basierender Treibstoffe, haben sich die Führer der Welt fast einhellig darob empört.

Nachdem die USA ihre Kohle-Industrie wiederbelebt haben, zum weltgrößten Ölproduzenten geworden sind und ihre einst siechen ökonomischen Zuwachsraten diejenigen der anderen hinter sich gelassen haben, folgen jene Weltführer inzwischen der Führung Amerikas, während man bzgl. Paris von ihnen gar nichts mehr hört. Das einst so mächtige IPCC, ehemals ein Fixpunkt in den Nachrichten, ist unschädlich gemacht und vergessen, nachdem die USA dessen Finanzierung gestoppt haben und dessen Bedeutung gegen Null tendiert.

Die Abnahme der regierungsamtlichen Finanzierung von Erneuerbaren folgt vielen Jahren, in denen Meinungsumfragen konsistent ergeben, dass der Öffentlichkeit der Klimawandel ziemlich egal ist. Regierungen haben schließlich verstanden, dass die Grüne Lobby doch nicht so mächtig war. Die ängstlichsten und am wenigsten prinzipientreuen Glieder der Gesellschaft – der Unternehmensbereich – könnten die nächsten sein, die bzgl. der Causa Klimawandel ein wenig mehr Rückgrat zeigen.

Einem durchgesickerten Memo zu Anfang dieses Monats [September] zufolge beabsichtigt BusinessEurope, der größte Unternehmer-Verband der EU, gegen EU-Pläne einer Verschärfung der Vorschriften bzgl. CO2-Emissionen auf ihre Kosten Widerstand zu leisten, wenngleich gedämpft. Falls sich diese Pläne bewahrheiten und der Verband es wirklich wagt, die Interessen seiner Mitglieder zu vertreten, ist dies ein weiteres Anzeichen, dass NGOs und deren wichtigste Verbündete – die Mainstream-Medien – ihre Macht eingebüßt haben.

Der ganze Beitrag steht hier.

Übersetzt von Chris Frey EIKE




Rundbrief der GWPF vom 26. September 2018 – Thema Energie­politik

Deutschland ringt mit dem Ende der Kohle-Energie, stellt doch die populistische AfD den Grünen Konsens in Frage

Der Kohle-Showdown reflektiert den mühsamen Kampf der deutschen Regierung um den Übergang zu erneuerbarer Energie. Falls es der Regierung nicht gelingt zu zeigen, dass es Klimaschutz sorgfältig ausbalancieren kann mit einer bezahlbaren und sicheren Energieversorgung, „dann wird das zu einer großen Herausforderung, die Wähler bei der Stange zu halten“, sagte Georg Kippels von der CDU während einer Tour durch seinen Wahlkreis im Rheinland. Dort hat er immer größere Schwierigkeiten, Angela Merkels Energiepolitik zu verteidigen. Bei der Wahl im vorigen Jahr konnte die AfD ihren Stimmenanteil in seinem Wahlkreis mehr als verdoppeln. – Bloomberg, 27. September 2018

Merkel wird vorgeworfen, sich im Zuge ihres Kampfes für das CO2-Ziel auf einen ,schmutzigen Deal‘ mit Autobauern eingelassen zu haben

Die deutsche Kanzlerin Angela Merkel hat den Zorn von Klima-Aktivisten und sogar von ihrem eigenen Umweltministerium auf sich gezogen, nachdem sie sich zuvor dagegen ausgesprochen hatte, die von der EU vorgegebenen CO2-Grenzen bis 2030 anzuheben. Die endgültige Vorschrift bzgl. Reduktion ist abhängig von einem Votum der EU-Kommission. Gestern jedoch widersprach Merkel öffentlich ihrem Umweltminister, als sie vor einer Tagung des BDI sagte, dass von der Kommission vorgegebene Ziel von 30% bestehen bleiben sollte. Sie sagte, dass höhere Ziele die Gefahr mit sich bringen, dass Autohersteller ihre Produktionsstätten nach außerhalb von Europa auslagern. – Forbes, 26. September 2018

,Angela Merkel ist eine Versagerin‘ – Die Autorität der deutschen Kanzlerin schwindet dahin vor dem Hintergrund von Widerstand aus den Reihen ihrer eigenen Partei.

Angela Merkel wurde als eine „Versagerin“ beschimpft, und zwar von Mitgliedern ihrer eigenen Partei in einer beispiellosen Rebellion, welche die deutsche Kanzlerin zu entthronen droht. Nach 18 Jahren an der Spitze der CDU sah sich Frau Merkel mit einem „Aufstand“ konfrontiert, als die Parlamentarier ihrer Partei ihre Rechte Hand aus dem Amt wählten. – Daily Express, 27. September 2018.

[Es sieht fast so aus, als hätte da noch mehr stattgefunden als in den deutschen Medien zu lesen war. Anm. d. Übers.]

—————————————–

Und noch zwei Meldungen, die dazu passen:

Man vergesse Paris: Frankreich steht vor Einschnitten bzgl. Wachstum erneuerbarer Energie

Die französische Regierung wird den Anstieg ihrer Ausgaben für Erneuerbare im Jahre 2019 drastisch reduzieren, weist doch der Haushaltsentwurf des Ökologie-Ministeriums einen Anstieg von lediglich 1,3% aus, welcher gleichauf mit der Inflationsrate liegt. Der Vorgang wird Frankreich zwingen, sich nach alternativen Energieträgern umzusehen, nachdem das Land Kohle-Energie aus UK importieren musste, als die Temperaturen im vorigen Winter stark gefallen waren. – The Energy Advocate, 26. September 2018

UN-Chef wettert gegen das Scheitern der Welt, die globale Erwärmung aufzuhalten

Der Chef der UN machte fehlende Führung verantwortlich für das Scheitern der Welt, strenge Entscheidungen zu treffen, um die globale Erwärmung aufzuhalten, und warnte, dass ein Schlüsselziel des Pariser Klima-Abkommens auf dem Spiel steht. – Associated Press, 26. September 2018

Übersetzt von Chris Frey EIKE




Der „Trick“ anomaler Temperatur-Anomalien

In den meisten Fällen ist die Anomalie sehr gering, und die Änderung wird aufgemotzt, indem die Y-Achse so gestreckt wird, bis diese geringe Änderung daherkommt wie ein steiler Anstieg (oder Fall). Die vermeintliche Aussagekraft der Graphiken wird durch die behauptete Genauigkeit der Anomalie verstärkt – bei der globalen mittleren Temperatur werden oftmals Zehntel- oder sogar Hundertstel Grad Celsius angegeben. Verschlimmert wird das Ganze, indem die Anomalien ohne oder nur mit sehr geringen „Fehler“-Bandbreiten gezeigt werden. Sollte das doch einmal der Fall sein, sind es nicht Fehler- oder Unsicherheits-Balken, sondern tatsächlich die statistische Standardabweichung (und nur selten wird das so angegeben).

Vor vielen Wochen habe ich dazu einen Beitrag geschrieben mit dem Titel [übersetzt] „Fast wie die Erde. Wir sind sicher!“ [Almost Earth-like, We’re Certain]. In dem Beitrag, der vom Weekly News Roundup des Science and Environmental Policy Project als „leicht lesbar“ charakterisiert worden ist, verlieh ich meiner Meinung Ausdruck, dass man Anomalien verwendet und so tut, als ob die Unsicherheit verringert worden wäre. Es ist nichts als Vortäuschung. Es ist ein Trick, um bekannte große Unsicherheiten zu verdecken.

Mit dem Eingeständnis, dass sich diese meine Meinung bis heute nicht geändert hat, denke ich, dass es gut ist, genauer zu erklären, wie ich zu dieser Ansicht gekommen ist – und was für einen umfangreichen Bereich in der Welt der Klimawissenschaft ziemlich kränkend sein wird. Zwei Dinge müssen wir betrachten:

1.Warum nenne ich das einen „Trick“?

2.Wer wird da ausgetrickst?

Zu Punkt 1: Warum nenne ich die Verwendung von Anomalien einen „Trick“?

Was genau ist das „Auffinden einer Anomalie“? Nun, nicht das, was man allgemein denkt. Die vereinfachte Antwort lautet, dass man die jährlich gemittelte Temperatur heranzieht und diese von jenem 30-Jahre-Klimamittel subtrahiert. Was übrig bleibt, ist „Die Anomalie“.

Das ist das, was sie sagen, aber nicht wirklich das, was sie tun. Sie fangen mit dem Auffinden von Anomalien auf einem niedrigen Niveau an und arbeiten sich empor bis zur Globalen Anomalie. Selbst wenn Gavin Schmidt den Gebrauch von Anomalien erklärt (hier), erkennen sorgfältige Leser, dass er sich rückwärts bewegen muss zu Absoluten Globalen Mittelwerten in Grad – indem die allgemein vereinbarte Anomalie dem 30-Jahre-Mittel hinzugefügt wird:

„… wenn wir versuchen, die absolute globale Mitteltemperatur für, sagen wir, das Jahr 2016 abzuschätzen. Die Klimatologie gibt im Zeitraum 1981 bis 2010 einen Wert von 287,4 ± 0,5K, und die Anomalie für 2016 (nach der GISTEMP-Grundlage) beträgt 0,56 ± 0,05°C. Folglich ist unsere Schätzung des absoluten Wertes 287,96 ±0,502 K, und bei Heranziehen des zweiten reduziert sich das zu 288,0 ± 0,5 K“.

Aber hier wollen wir einfach nur betrachten, dass die Anomalie einfach das von der berechneten GAST* subtrahierte 30-Jahre-Mittel in Grad ist.

Wie Schmidt freundlicherweise erklärt, ist die korrekte Angabe einer GAST in Grad irgendetwas auf der Linie 288,0 ± 0,5 K – das ist die Gradzahl bis auf ein Zehntel Grad genau mit einer Unsicherheits-Bandbreite von ± 0,5 K. Wenn eine Zahl auf diese Art und Weise angegeben wird, bedeutet das, dass der tatsächliche Wert nicht genau bekannt ist, aber es ist bekannt, dass er innerhalb der Bandbreite der Plus/Minus-Angabe liegt.

[*GAST = Global Averaged Surface Temperature]

Die Abbildung zeigt dies als aktuelle Praxis mit den Temperaturaufzeichnungen … die gemessenen Temperaturen sind auf ganze Grad Fahrenheit gerundet – eine Angabe, welche IRGENDEINE der unendlichen Zahl kontinuierlicher Werte zwischen 71,5 und 72,499999… repräsentiert.

Es ist kein Messfehler, es ist die gemessene Temperatur dargestellt als eine Bandbreite von Werten 72 +/– 0,5. Es ist eine Unsicherheits-Bandbreite – hinsichtlich der tatsächlichen Temperatur sitzen wir immer noch im Dunklen – wir kennen lediglich die Bandbreite.

Nun ist die Ein-Grad-Bandbreite für normale Menschen als Information ausreichend. Knifflig wird es in manchen Fällen, wenn sich die Temperatur dem Gefrierpunkt nähert – Temperaturen über oder unter dem Gefrierpunkt sind klimatisch bedeutsam für Landwirte, bei der Straßenausbesserung und Wartung von Flugzeugen.

Egal was wir mit Temperaturaufzeichnungen machen, müssen wir uns mit der Tatsache befassen, dass die tatsächliche Temperatur nicht aufgezeichnet worden ist – wir haben lediglich Bandbreiten aufgezeichnet, innerhalb derer die tatsächliche Temperatur lag.

Dies bedeutet, dass wenn diese Temperaturen für Berechnungen herangezogen werden, müssen sie Bandbreiten bleiben und als solche behandelt werden. Was nicht ausgesondert werden kann ist die Bandbreite des Wertes. Die Mittelung eliminiert die Bandbreite nicht – der Wert hat immer die gleiche Bandbreite. (Siehe Durable Original Measurement Uncertainty).

Auf der Grundlage einfacher Logik, wenn wir schließlich zur Globalen Mittleren Temperatur kommen, ist immer noch die originale Unsicherheit vorhanden – wie Dr. Schmidt korrekt illustriert, wenn er die Absolute Temperatur für das Jahr 2016 mit 288,0 ± 0,5 K angibt.

Der Trick kommt dort ins Spiel, wo die tatsächliche berechnete Temperatur zu einer Anomalie von Mittelwerten konvertiert. Wenn man ein Mittel berechnet (ein arithmetisches Mittel – Summe aller Werte geteilt durch die Anzahl der Werte), bekommt man eine sehr genaue Antwort. Wenn man das Mittel von Werten heranzieht, welche Bandbreiten sind, wie etwa 71 +/- 0,5, dann ist das Ergebnis eine sehr präzise Zahl mit einer hohen Wahrscheinlichkeit, dass das Mittel nahe dieser präzisen Zahl liegt. Während also das Mittel ziemlich genau ist, sind die tatsächlichen Temperaturen der Vergangenheit immer noch unsicher bis +/-0,5.

Drückt man das Mittel mit der gebräuchlichen „+/-2 Standardabweichung“ aus, sagt uns das nur, welchen Mittelwert wir erwarten können – wir können ziemlich sicher sein, dass das Mittel innerhalb jener Bandbreite liegt. Die tatsächliche Temperatur, wenn wir sie ehrlicherweise in Grad darstellen wie in der folgenden Graphik, immer noch behaftet sein mit der Messungenauigkeit: +/-0,5 Grad.

Diese Graphik wurde (ohne meine Anmerkungen) von Dr. Schmidt in seinem Beitrag über Anomalien (hier) gezeigt. Ich habe die erforderlichen I-Balken für +/-0,5 Grad hinzugefügt. Man beachte, dass die Ergebnisse der verschiedenen Re-Analysen selbst einen Spread von 0,4 Grad aufweisen – man könnte darüber sprechen, die Gesamtzahl von 0,9 Grad als die Unsicherheit der Globalen Mittleren Temperatur zu verwenden auf der Grundlage der Unsicherheiten oben (siehe die beiden grünen Unsicherheits-Balken, einer über dem anderen).

Dies illustriert die wahre Unsicherheit der Globalen Mittleren Temperatur – Schmidts eingeräumte +/-0,5 und die Unsicherheits-Bandbreite zwischen den Re-Analyse-Produkten.

Im Sinne der realen Welt sollte die oben dargestellte Unsicherheit als die Minimum-Unsicherheit betrachtet werden – die Unsicherheit der Originalmessungen plus die Unsicherheit der Re-Analyse. Es gibt noch viele andere Unsicherheiten, die man eigentlich hinzufügen müsste – wie sie etwa auftreten, wenn man Lücken in den Messungen mit berechneten Temperaturwerten füllt.

Der Trick besteht nun darin, dass der gleiche Datensatz als Anomalien präsentiert und behauptet wird, dass die Unsicherheit folglich auf 0,1 Grad reduziert ist (wenn sie überhaupt angegeben wird) – BEST halbiert diesen Wert nochmals und proklamiert 0,05 Grad!

Die Herabstufung des Datensatzes zu einem statistischen Produkt, Anomalie genannt, informiert uns nicht über die wahre Unsicherheit im tatsächlichen Parameter selbst – die Globale Mittlere Temperatur – jedenfalls nicht mehr als der Blick rückwärts auf eine Bergkette mittels eines speziellen Fernglases, das die Berge kleiner erscheinen lässt, wie stark das Auge auch immer getäuscht wird.

Hier folgt eine Stichprobe der Daten, welche dier Graphik ganz oben in diesem Beitrag ausmachen. Die Spalten bedeuten: Jahr – GAST-Anomalie – Glättung nach dem Lowess-Verfahren:

2010  0.7    0.62
2011  0.57  0.63
2012  0.61  0.67
2013  0.64  0.71
2014  0.73  0.77
2015  0.86  0.83
2016  0.99  0.89
2017  0.9    0.95

Die Vergrößerung der Graphik im Bereich 2000 bis 2017 sieht so aus:

7

Wir sehen globale Anomalien, dargestellt bis zu einer Genauigkeit von Hundertstel Grad Celsius. Unsicherheit wird nicht gezeigt – keine einzige ist erwähnt auf der NASA-Website, auf der die Graphik zu finden ist (hier). Auf dieser NASA-Website, zu finden im Abschnitt Vital Signs – Global Climate Change, heißt es weiter, dass „diese Forschungen im Wesentlichen konsistent sind mit ähnlichen Konstruktionen durch die Climatic Research Unit und die National Oceanic and Atmospheric Administration.” Schauen wir mal:

Von der CRU:

Hier sehen wir die Globale Temperatur nach CRU (Referenz-Zeitraum 1961 bis 1990) – ärgerlicherweise also mit einem anderen Referenz-Zeitraum als bei der NASA 1951 bis 1980. Die Differenz bietet ein paar Einblicke in den Umstand, welche gewaltigen Unterschiede diese verschiedenen Referenz-Zeiträume bzgl. der Ergebnisse ausmachen.

2010   0.56 0.512
2011 0.425 0.528
2012   0.47 0.547
2013 0.514 0.569
2014   0.579  0.59
2015 0.763 0.608
2016   0.797 0.62
2017 0.675 0.625

Die offizielle CRU-Anomalie für das Jahr 2017 beträgt 0,675°C – präzise bis zu einem Tausendstel Grad. Sie zeichnen das dann mit 0,68°C in die Graphik ein. CRU bringt es fertig, die gleiche Präzision in ihren geglätteten Werten zu zeigen – 2015 = 0,608.

Und der Vollständigkeit halber, die NOAA bietet folgende Werte an, präzise bis auf ein Hundertstel Grad:

2010,   0.70
2011,   0.58
2012,   0.62
2013,   0.67
2014,  0.74
2015,  0.91
2016,  0.95
2017,  0.85

Wir sehen, dass diese Anomalien anders als absolute globale Temperaturen wie jene von Gavin Schmidt bei RealClimate gezeigten (hier) mit überhaupt keiner Unsicherheit gezeigt werden. Keine SDs [Standard-Abweichungen], keine 95% CIs, keine Fehlerbalken, nichts. Und das präzise bis zu einem Hundertstel eines Grades Celsius.

Zusammengefasst: Die großen Klima-Institutionen der Welt informieren uns über den Zustand des Klimas, indem sie uns Graphiken der Anomalien der Globalen Mittleren Temperatur [GAST] anbieten. Diese zeigen einen stetigen und alarmierenden starken Anstieg seit etwa 1980. Dieser alarmierende Anstieg besteht aus einer globalen Änderung von etwa 0,6°C. Nur das GISS liefert irgendeine Art Unsicherheits-Schätzung, und auch das nur in der Graphik mit dem grünen 0,1°C-Balken wie oben gezeigt. Betrachten wir ein einfaches Beispiel: Wir folgen Gavin Schmidt gemäß diesem seinem Beitrag vom August 2017 und verwenden GAST-Absolutwerte in Grad Celsius mit seiner angenommenen Unsicherheit von 0,5°C.

Wie sieht das Mittel der beiden GAST-Werte aus, eine für die Nord- und eine für die Südhemisphäre? Um ein wirklich einfaches Beispiel zu geben, wollen wir einmal jeder Hemisphäre den gleichen Wert zuordnen von 20 +/-0,5 Grad Celsius. Unsere Rechnung: 20 +/- 0,5 plus 20 +/- 0,5 geteilt durch 2 ergibt … Das Mittel ist genau 20. (Nun, das nennt man Präzision…).

Was ist mit der Bandbreite? Sie beträgt +/- 0,5 – ist also 1 Grad breit. Das Mittel mit der Bandbreite beträgt 20 +/- 0,5.

Aber was ist mit der Unsicherheit? Nun, die Bandbreite legt die Unsicherheit fest: wir sind sicher, dass das Mittel zwischen 20,5 und 19,5 liegt.

Schauen wir die Wahrscheinlichkeiten – hier gleiten wir in den Bereich „Statistik“.

Hier folgen einige der Werte für die Nord- und Südhemisphäre aus einer unendlichen Anzahl von Möglichkeiten, die sich aus 20 +/- 0,5 ergeben. Wenn wir gleiche Werte heranziehen, ist das Mittel natürlich das gleiche. Aber wir wollen Wahrscheinlichkeiten haben – wie viele Wege gibt es also, dass das Ergebnis 20,5 oder 19,5 beträgt? Jeweils einen Weg.

NH           SH
20.5 —— 20.5 = 20.5 einzig mögliche Kombination
20.4         20.4
20.3         20.3
20.2         20.2
20.1         20.1
20.0         20.0
19.9         19.9
19.8         19.8
19.7         19.7
19.6         19.6
19.5 —— 19.5 = 19.5 einzig mögliche Kombination

Aber wie ist das mit 20,4? Es können 20,4-20,4 oder 20,5-20,3 oder 20,3-20,5 sein – drei mögliche Kombinationen. 20,3? 5 Kombinationen. 20,2? 7 Kombinationen. 20,1? 9 Kombinationen. 20,0? 11 Kombinationen. Jetzt sind wir über den Buckel gesprungen: 19,9? 9 Kombinationen. 19,8? 7 Kombinationen. 19,7? 5 Kombinationen. 19,6? 3 Kombinationen und 19,5? 1 Kombination.

Man erkennt, wie die Verteilung aussieht:

Da wir lediglich 11 Werte für jede der gemittelten Temperaturen verwendet haben, bekommen wir eine wenig pointierte Kurve. Es gibt zwei Kleine Graphiken … die zweite (unten) zeigt, was passieren würde, falls wir das Mittel von zwei identischen Zahlen gefunden hätten, jede mit einer Unsicherheits-Bandbreite von +/-0,5, falls sie gerundet worden wären auf das nächste halbe Grad anstatt auf das normale ganze Grad. Das Ergebnis ist intuitiv – Das Mittel besitzt immer die höchst mögliche Wahrscheinlichkeit, dass es der zentrale Werte ist.

Nun, dass scheint so offensichtlich, dass es selbst Dummies einsehen. Schließlich sollte ein Mittel mathematisch immer der zentrale Wert sein. Der Punkt ist aber: mit unseren gleich verteilten Werten um das Mittel – und wir erinnern uns, wenn wir einen Temperaturrekord sehen, angegeben als XX +/- 0,5, sprechen wir über eine Bandbreite von gleichmäßig verteilten möglichen Werten – wird das Mittel immer der zentrale Wert sein, ob wir nun das Mittel einer einzelnen Temperatur oder das von tausend Temperaturwerten mit dem gleichen Wert finden. Die Unsicherheits-Bandbreite ist jedoch immer die Gleiche! Natürlich! Muss doch so sein.

Hierin liegt der Trick – wenn sie die Anomalie des Mittels heranziehen, lassen sie die Unsicherheits-Bandbreite insgesamt fallen und konzentrieren sich einzig auf die zentrale Zahl, das Mittel, welches immer präzise ist und nahe dieser zentralen Zahl liegt. Wenn überhaupt einmal eine Unsicherheit genannt wird, wird sie als die Wahrscheinlichkeit angegeben, wie nahe das Mittel der zentralen Zahl liegt – und ist getrennt von der tatsächlichen Unsicherheits-Bandbreite der Originaldaten.

William Briggs sagt dazu: „Diese Ergebnisse sind keine Statements bzgl. der tatsächlichen Temperaturen in der Vergangenheit, die wir bis auf die Messgenauigkeit bereits kennen“.

Wir kennen bereits die berechneten GAST (siehe die Re-Analysen oben). Aber wir wissen nur, dass sie irgendwo innerhalb deren bekannten Unsicherheits-Bandbreiten liegt, welche laut Dr. Schmidt +/- 0,5 Grad betragen. Berechnungen der Anomalien der verschiedenen Mittelwerte sagen uns nichts über die tatsächlichen Temperaturen der Vergangenheit – die kannten wir bereits – und wir wissen, wie unsicher das war.

Es ist ein TRICK zu behaupten, dass mittels der Überleitung jährlicher Globaler Mittlerer Temperaturwerte zu Anomalien wir die bekannte Unsicherheit UNBEKANNT machen können.

Zu Punkt 2: Wer wird ausgetrickst?

Dick Feynman würde sagen: „Sie halten sich selbst zum Narren“. Sie kennen bereits die GAST so genau wie sie dieselben mit ihren gegenwärtigen Verfahren zu berechnen in der Lage sind. Sie kennen die involvierte Unsicherheit – Dr. Schmidt räumt ein, dass sie um 0,5 K liegt. Folglich ist ihre Verwendung von Anomalien (oder die Mittelwerte von Anomalien…) einfach ein Weg, sich selbst zum Narren zu halten, indem die bekannte Unsicherheit irgendwie auf magische Weise einfach verschwindet, äquivalent zu „falls wir auf diese Weise blinzeln und unseren Kopf nach einer Seite neigen…“.

Viel Glück dabei!

——————————-

Schlussbemerkungen des Autors:

Dieser Beitrag wird einem gewissen Segment der Leserschaft hier nicht gefallen, aber das verringert nicht dessen Validität. Jene, die sich selbst zum Narren halten wollen mit dem Verschwinden lassen der bekannten Unsicherheit der Globalen Mittleren Temperatur werden den einfachen, hier dargestellten Argumenten widersprechen. Das ist deren Minus.

Ich verstehe das Argument der Statistiker, welche darauf bestehen, dass das Mittel wirklich viel genauer ist als die Originaldaten. Aber sie lassen zu, dass jene Tatsache ihnen die Erlaubnis gibt, die Unsicherheits-Bandbreite der Originaldaten aus der realen Welt zu ignorieren. Man verstehe mich nicht falsch, sie versuchen nicht, uns auszutricksen. Sie sind sicher, dass dies wissenschaftlich und statistisch korrekt ist. Sie halten sich jedoch selbst zum Narren, weil im Endeffekt alles, was sie tun, die Veränderung der Werte auf der Y-Achse ist (von ,absolute GAST in K‘ zu ,absolute GAST in K minus dem Klimamittel in K‘) und die Unsicherheit fallen lassen – mit viel Rechtfertigung aus der Statistik-/Wahrscheinlichkeits-Theorie.

Link: https://wattsupwiththat.com/2018/09/25/the-trick-of-anomalous-temperature-anomalies/

Übersetzt von Chris Frey EIKE




Das Sommer­halbjahr 2018 machte seinem Namen alle Ehre Teil II – Ein Nachruf

Die Region um Erfurt entspricht hinsichtlich ihres Temperaturniveaus recht gut dem DWD-Deutschlandmittel und steht damit grob für die Verhältnisse in Deutschland; hinsichtlich des Niederschlages ist sie allerdings trockener. Als in den ersten Apriltagen der Schnee in Mecklenburg-Vorpommern bis zu 30cm hoch lag und das Osterfest auch im übrigen Deutschland sehr wechselhaft und kühl mit Schnee im Thüringer Wald begann, ahnte man noch nichts von der wohl längsten Schönwetterperiode der jüngsten Klimageschichte. Doch schon am Ostermontag setzte eine Erwärmung ein; und bereits am 4. April wurde in Erfurt-Bindersleben erstmalig die 20-Grad-Marke überschritten. Bis zur Monatsmitte dominierte danach wechselhaftes Wetter mit apriltypischen Tagesmaxima zwischen 12 und 22 Grad und gelegentlichen Regenfällen; zu diesem Zeitpunkt waren die Startbedingungen für die Vegetation noch günstig. Eine erste, hochsommerliche, sonnenscheinreiche Periode begann am 18.04. und währte bis zum 23.04. Schon trieben Eichen, Robinien und Walnüsse aus – ein untrügliches Zeichen für einen viel zu warmen Frühling, und die Frühblüher welkten in den Wäldern. Dabei zog am 19.04. mit den ersten Apfelblüten der Vollfrühling fast termingerecht in Weimar ein:

Abbildung 1: Kaum verfrühte Apfelblüte 2018 – Schuld war der kalte Spätwinter. Auch langfristig (seit 1990) verfrühte sich die Apfelblüte nur um etwa 3 Tage.

2018 geht als „Jahr ohne Frühling“ in die Klimageschichte ein, denn die Baumblüte fand bei hochsommerlichen 24 bis 28 Grad statt, weshalb die meisten Gehölze nur 2 bis 4 Tage blühten:

Abbildung 2: Baumblüte am 20. April bei 28 Grad – nach wenigen Tagen war alles verblüht und ergrünt. Foto: Stefan Kämpfe

Bis zum Monatswechsel blieb es dann wechselhaft und vorübergehend auch kühl; einzelne Schauer linderten den bereits akuten Wassermangel kaum. Im letzten Monatsdrittel blühten schon erste Rosskastanien und Weißdorne sowie der Raps; der Flieder erreichte zum Monatswechsel bereits die sehr reiche Vollblüte. Der Mai starte mit viel Wind sowie letzten Bodenfrösten, ehe es ab dem 5. Mai immer sonniger und zunächst tagsüber wärmer wurde; starke Nordostwinde trockneten die Böden weiter aus. Trotz der Dürre konnte man eine reiche Orchideenblüte in Nordthüringen erleben:

Abbildung 3: Reiche Blüte des Kleinen Knabenkrauts Anfang Mai 2018 auf einem Steppenrasen etwa 50 Km nördlich von Erfurt. Foto: Stefan Kämpfe

Am 7. Mai begann der Frühsommer mit den ersten blühenden Holunderdolden vorzeitig, aber nicht extrem früh:

Abbildung 4: Leichte Verfrühung der Holunderblüte seit 1990 um 5 Tage; 2018 begann sie mittelfrüh.

Der Laubaustrieb war um den 10. Mai fast überall abgeschlossen; trotz gelegentlicher Regenschauer blieben Sonne, Ostwinde und Dürre ein Markenzeichen des Mai 2018.Auch nach einmonatiger Dürre blühten die Orchideen, darunter auch die Frauenschuhe, meist sehr reich:

Abbildung 5: Blühender Trupp Frauenschuhe südlich von Weimar am 11. Mai 2018. Foto: Stefan Kämpfe

Es gab einzelne, kühlere Tage in diesem Mai, doch sie waren – ebenso wie Regenschauer, selten. Trotz der immer akuteren Dürre blühten viele Halbtrockenrasen sehr reich; auch die Margeriten ließen sich von der Dürre kaum beirren:

Abbildung 6: Trockener Glatthafer – Wiese bei Weimar-Schöndorf mit Margeriten am 21. Mai 2018. Foto: Stefan Kämpfe

Die anhaltende Wärme begünstigte das Spargelwachstum; insgesamt verlief die Ernte nach relativ spätem Beginn gut, und außerdem die Entwicklung einer besonders reichen Insektenwelt, darunter auch die der Gespinstmotte; mancherorts wurden Sträucher und ganze Obstbäume kahl gefressen und eingewickelt:

Abbildung 7: Völlig entlaubter und eingesponnener Strauch bei Kölleda. Foto: Stefan Kämpfe

Im letzten Monatsdrittel reiften erste Süßkirschen; und die Blüte der Sommerlinde startete; zum Monatswechsel gilbte bereits die Wintergerste. Während in Weimar erste Kurzgrasrasen bereits ausbrannten, sorgten um Erfurt ein paar Gewitterschauer für üppiges Grün:

Abbildung 8: Sehr reicher Blühaspekt des Aufrechten Ziest auf einem Gipshügel bei Erfurt am 31. Mai 2018. Foto: Stefan Kämpfe

Im Juni startete mit den ersten Winterlindenblüten der phänologische Hochsommer merklich verfrüht, und bei leicht wechselhaftem, mäßig warmem Nordwetter konnte man sich über eine gute Kirschernte freuen:

Abbildung 9: Geringe Verfrühung der Winterlinden-Blüte (Beobachtungsdaten leider erst seit 1998 vorliegend). Zusammen mit 2011, war 2018 der zeitigste Blühbeginn.

Abbildung 10: Gute Kirschernte 2018, aber die Früchte reiften sehr schnell. Foto: Stefan Kämpfe

Immer mehr dominierten wegen der anhaltenden Trockenheit die Farben Gelb und Braun in der Landschaft; nur einige Moorwiesen zeigten sich noch frisch-grün:

Abbildung 11: Fruchtendes Wollgras in einem Quellmoor südlich von Weimar am 7. Juni 2018. Seit 1990 sind dort viele geschützte Pflanzenarten deutlich häufiger geworden – Dank sachgerechter Pflege, doch könnten auch mehr Wärme und mehr CO2 positiv gewirkt haben. Foto: Stefan Kämpfe

Mitte Juni begann die Wintergerstenmahd um etwa 3 Wochen verfrüht. Stellenweise lohnte sich die Getreideernte nicht; manche Bauern häckselten das Korn zu Futter oder pflügten es gleich unter. Zur Monatsmitte reifte schon die Stein-Weichsel. In den Wäldern verwelkten selbst so robuste Stauden wie der Zaun-Giersch oder das Wald-Bingelkraut; und die normalerweise auf die zweite Julihälfte fallende Blüte der Krim-Linden in den Städten fand bereits jetzt statt; zum Monatswechsel Juni/Juli waren bereits die meisten Sauerkirschen und erste Ebereschenfrüchte reif. Anfang Juli kühlten sich zwar die Nächte unter dem Einfluss eines Skandinavien-Hochs teilweise unter 10 Grad, in Bodennähe gar bis Null Grad, ab, aber die Dürre verschärfte sich weiter. Viele Kurzgrasrasen verwelkten völlig:

Abbildung 12: Ausgebrannter Kurzgrasrasen am Weimarplatz – sieht schlimm aus, aber nach ein paar Regentagen war das alles wieder grün. Foto: Stefan Kämpfe

Trotzdem blühten noch einige Wiesenblumen, und man konnte, wie schon in den Vorjahren, sehr viele Schmetterlinge beobachten:

Abbildung 13: Bläuling auf einer viel zu früh erblühten Wiesen-Flockenblume. Foto: Stefan Kämpfe

Ungewöhnlich früh und reich erblühten Anfang Juli auch die Japanischen Schnurbäume; ihre normale Blütezeit fällt auf Mitte August bis Anfang September. Am 5. Juli zog ein Unwetter über den Nordosten Weimars, aber das linderte die Dürre, ebenso wie einige stärkere Schauer und Gewitter um den 10. Juli, nur vorübergehend. Am 13.07. begann mit den ersten reifen Holunderdolden bereits der phänologische Frühherbst:

Abbildung 14: Die Holunderreife verfrühte sich langfristig um etwa eine Woche. Aber ihr bislang zeitigster Beginn war nicht 2018, sondern 2007.

Mitte Juli konnte man schon erste Kornäpfel und Pflaumen ernten, und am 19.07. wurden die ersten reifen Wildrosen- und Weißdornfrüchte gesichtet. Um den Jakobitag (25. Juli) hatte man bereits das gesamte Getreide (inklusive Raps) gemäht; normalerweise ist das erst so um den 25. August der Fall. Die Winterweizen-Ernte fiel nach den bisher vorliegenden Ergebnissen mit 64,4 dt/ha im Thüringenmittel deutlich schlechter als in den Vorjahren aus; trotzdem muss man sie als ausreichend einstufen, denn sie unterschritt den Mittelwert der Jahre 1991 bis 2017 (69,9 dt/ha) nur um 5,5 Dezitonnen je Hektar. Von einer totalen Missernte, wie in vielen Medien kolportiert, kann also keine Rede sein:

Abbildung 15: Keine gute Winterweizenernte 2018 in Thüringen – doch eine Missernte wäre viel geringer ausgefallen. Langfristig werden die Erträge weiter steigen – Dank besserer Anbaumethoden und Sorten, aber auch, weil der Grundnährstoff CO2 reichhaltiger verfügbar ist.

Freilich gab es regional große Unterschiede, so auch um Erfurt/Weimar, wo alle Gebiete nordöstlich von Erfurt stärkere Ertragsausfälle zu verzeichnen hatten, als die Gebiete westlich und südlich der Stadt. Besonders dürftig fiel die Rapsernte aus; aber der Winterraps gehört ohnehin nicht zu den geeignetsten Kulturen im Thüringer Becken – vielleicht bewegt das schlechte Ergebnis den ein oder anderen Landwirt zum Nachdenken über den viel zu umfangreichen Anbau von Pflanzen für die „Energiewende“. Noch ist die Kartoffelernte nicht abgeschlossen, aber auch sie wird weit unter den Ergebnissen der Vorjahre bleiben. Auch mit Beginn des letzten Hochsommer-Monats August hielt die meist sonnenscheinreiche, trocken-heiße Witterung an; einzelne Gewitter, teils mit Unwettercharakter, so am 2. und 17.08., linderten die Dürre nur wenig. Nun setzte auch ein verstärkter Hitzelaubfall bei Hybrid-Pappeln und Bergahornen ein; zum Monatsanfang reiften schon die Kornelkirschen und im Monatsverlauf überreich alle Arten von Pflaumen. Außerdem stellte sich eine Mäuse- und Wespenplage ein:

Abbildung 16: Viel wurde 2018 über die oft lästigen Wespen geschimpft. Doch sie gehören zur Natur und sind wichtige Bio-Indikatoren – wo es sie gibt, geht es der Umwelt gut. Foto: Stefan Kämpfe

Um den 20. August setzte bei manchen Linden-Arten, sicher auch trockenheitsbedingt, schon die Laubfärbung ein. Manche Obstbäume hingen derart voll, dass ganze Äste abbrachen. Nach einigen Gewitterschauern sanken die Temperaturen ab dem 25. August auf frühherbstliche Werte; und erste Rosskastanien reiften. In den ersten Septembertagen linderten stärkere Regenfälle die Dürre merklich; die Wiesen ergrünten wieder, doch ab dem 4. September kehrte der Hochsommer zurück und hielt sich mit kurzen Pausen noch bis zum 21. September mit Spitzenwerten von nochmals nahe 30 Grad. Zum Monatsanfang reiften schon erste Walnüsse; etwas Laubfärbung war bei Birnen, Süßkirschen und Linden zu beobachten. Vereinzelt konnten nun sogar ein paar Rotkappen, Steinpilze und Hallimasche gefunden werden; doch bislang erwies sich 2018 als sehr schlechtes Pilzjahr. Kernobsternte und Weinlese wurden hingegen mit sehr guten Ergebnissen eingefahren. Und überall fiel der überreiche Fruchtbehang der Obstbäume, Eichen, Buchen, Bergahorne und Eschen auf – ein regelrechtes Mastjahr, freilich reiften alle diese Früchte um 3 bis 5 Wochen verfrüht:

Abbildungen 17 und 18: Massenhaft Fallobst, massenhaft Eicheln, so sah es vielerorts im September 2018 aus. Fotos: Stefan Kämpfe

Mit einem markanten Temperatursturz von 27 auf 13 Grad endete die Hitze am Nachmittag des 21. September. Ein schönes Abendrot konnte nicht darüber hinwegtäuschen, dass die schöne Jahreszeit nun größtenteils vorbei war:

Abbildung 19: Abendrot hinter der abziehenden Kaltfront am 21.09., welche die Septemberwärme abrupt beendet hatte. Foto: Stefan Kämpfe

Und am kalendarischen Herbstanfang beendete starker Regen mit Sturm und Kälte die monatelange Dürre endgültig – Pilzfreunde dürfen also noch hoffen. Auf den Mittelgebirgsgipfeln fiel kurzzeitig nasser Schnee. In den letzten Septembertagen besserte sich das Wetter wieder merklich; zeitweise schien nach bitterkalten Nächten mit Bodenfrösten die Sonne; und vorübergehend wurde es nochmals um die 20 Grad warm. Aber das „Schönwetter-Sommerhalbjahr 2018“ war bloß noch Geschichte.

Zusammenfassung: Dieses Sommerhalbjahr 2018 hatte seine guten und schlechten Seiten – auch in der Natur. Liebhaber des Englischen Rasens hatten ebenso zu leiden wie viele Getreidebauern; dafür freuten sich die Obstbauern und die Winzer. Die Wälder und Wiesen werden sich von der Trockenheit rasch erholen; für viele Wildpflanzen und Insekten schien die anhaltende Wärme eher vorteilhaft gewesen zu sein.

Stefan Kämpfe, Diplomagraringenieur, unabhängiger Natur- und Klimaforscher




Das Sommer­halbjahr 2018 machte seinem Namen alle Ehre – Ein Nachruf

Das Sommerhalbjahr 2018 – eine klimatologische Einordnung

Mit etwa 16,9°C (DWD-Deutschlandmittel, vorläufige Schätzung) erlebten wir 2018 das mit Abstand wärmste Sommerhalbjahr seit Beginn der DWD-Messreihe im Jahre 1881; die Folgeplätze bleiben für 1947 mit 16,1°C und 2003 mit 15,9°C. Den deutlichen Temperaturanstieg des Sommerhalbjahres seit 1856 und eine mögliche Ursache dafür, die AMO, (AMO = Atlantische Mehrzehnjährige Oszillation, ein Index für die gemittelten Meeresoberflächentemperaturen im zentralen Nordatlantik), zeigt folgende Grafik:

Abbildung 1: Deutliche Erwärmung des Sommerhalbjahres in Deutschland. Die Reihe beginnt mit dem Jahr 1856, weil ab da die AMO-Werte vorliegen. In den AMO-Warmphasen, speziell an deren Ende, traten warme Sommerhalbjahre gehäuft auf, so auch gegenwärtig. Die 2018er Werte sind geschätzt.

Erste, halbwegs verlässliche, durchgängige Temperaturmessungen wurden in Zentralengland durchgeführt. Auch wenn die dortigen atlantischeren Klimaverhältnisse nicht bedingungslos mit denen in Deutschland vergleichbar sind, lohnt sich ein Blick dorthin; denn er offenbart, dass es erstens längere Erwärmungsphasen schon immer gab, und dass zweitens die Erwärmung des Sommerhalbjahres insgesamt seit dem Maunder- Minimum, dem Höhepunkt der „Kleinen Eiszeit“, recht bescheiden ausgefallen ist. Und es gibt noch eine Überraschung: Dort war 2006 das bislang wärmste Sommerhalbjahr – voraussichtlich ganz knapp vor 2018:

Abbildung 2: Temperaturentwicklung des Sommerhalbjahres in Zentralengland (CET). Im Gegensatz zu Deutschland erwärmte sich dort das Sommerhalbjahr nur wenig; zumal, wenn man bedenkt, dass die Reihe mit den sehr kühlen Bedingungen der „Kleinen Eiszeit“ startet.

2018 – Das längste Sommerhalbjahr aller Zeiten?

Abgesehen vom kalendarischen Sommerhalbjahr (1. April bis 30. September) gibt es keine exakte Definition für die Dauer eines Sommerhalbjahres. Im meteorologischen Sinne ist es praktikabel, darunter einen einigermaßen zusammenhängenden Zeitraum warmer Tage (solche mit einem Tagesmaximum von mindestens 20,0°C) zu verstehen. Um das zu gewährleisten, sollte aber nur dann der erste und der letzte warme Tag registriert werden, wenn zwischen diesen höchstens eine Zeitspanne von 4 Wochen (28 Tage) ohne warme Tage liegt, denn einzelne „Ausreißer“ schon im März und noch Ende Oktober/Anfang November eröffnen oder schließen keine warme Jahreshälfte, wenn ihnen eine zu lange, kühle Periode folgt beziehungsweise vorausgeht. Was 2018 am Beispiel der Flugwetterwarte Erfurt/Weimar betrifft, so startete das zusammenhängende Sommerhalbjahr am 4. April sehr zeitig und dauerte (vorerst) bis zum 21. September – sollte es bis spätestens Mitte Oktober weitere warme Tage geben, was gar nicht so selten ist, wäre eine Verlängerung möglich. Die gab es 1989. Damals begann das Sommerhalbjahr bereits am 27. März und endete erst am 28. Oktober – das Sommerhalbjahr 2018 war also das wärmste, aber nicht unbedingt das längste. Die folgenden zwei Grafiken zeigen zur besseren Veranschaulichung zuerst ein sehr kurzes Sommerhalbjahr (1996), dann das sehr lange von 1989:

Abbildungen 3a und 3b: Sehr kurzes Sommerhalbjahr 1996 (oben); zwar wurde es damals schon um den 22. April über 20 Grad warm, doch dann folgten mehr als 28 Tage Kälte; und schon nach dem 4. September gab es keine warmen Tage mehr; auch keine späten „Ausreißer“ im Oktober. 1989 (unten) startete das Sommerhalbjahr am 27. März und währte bis zum 28. Oktober. Der bisherige Verlauf für 2018 fehlt noch, er wird aber aller Voraussicht nach die enorme Länge des Sommerhalbjahres von 1989 nicht erreichen; Bildquelle wetteronline.de; leicht ergänzt.

Die Niederschlagsverhältnisse – mehr Dürren im Sommerhalbjahr?

Exakte Definitionen des Begriffs „Dürre“ fehlen – es hängt viel von den subjektiven Betrachtungsweisen, der Betroffenheit einzelner Menschen oder Berufsgruppen, den örtlichen Gegebenheiten (Geografie, Infrastruktur) und den gesellschaftlichen Verhältnissen ab, was darunter verstanden wird. Indizien für Dürren sind geringe Monats-, Jahreszeiten- und Jahresniederschläge oder die Anzahl von Tagen, Wochen und Monaten ohne Niederschlag. Schon ein Blick auf die Entwicklung der Sommerhalbjahresniederschläge in Deutschland seit 1881 zeigt jedoch: Sehr trockene Sommerhalbjahre gab es schon immer, der Negativrekord von 2011 wurde knapp verfehlt, und ein Trend zu mehr Trockenheit ist nicht erkennbar:

Abbildung 4: Gebietsmittel der Niederschlagssummen für Deutschland im Zeitraum April bis September seit 1881. Ein merklicher Trend zu trockeneren Sommerhalbjahren fehlt bislang; auch die Streuung der Werte, welche ein Maß für ein extremeres Klima sein könnte (mehr Streuung bedeutet mehr nasse und dürre Sommerhalbjahre im Wechsel) wurde augenscheinlich nicht größer. Sehr trocken waren neben 1911 auch 1893, 1904, 1929, 1947, 1959, 1976 und 2003; 2018 wird den Negativrekord von 1911 aller Voraussicht nach verfehlen.

Einen gewissen Hinweis, ob sich Dürren häufen, liefert die Anzahl der niederschlagsarmen Monate je Dekade, hier am Beispiel Potsdams gezeigt, für das im Sommerhalbjahr alle Monate mit weniger als 30mm als wesentlich zu trocken gelten können. Es zeigt sich bislang keine signifikante Häufigkeitszunahme:

Abbildung 5: Von den 60 Sommerhalbjahres-Monaten einer Dekade in Potsdam seit 1893 war – mit leichten Schwankungen, meist etwas weniger als ein Viertel (15) zu trocken. Eine merkliche Zunahme ist nicht erkennbar, obwohl die 2013 begonnene Dekade noch nicht vollendet ist.

Wie immer in besonders trocken-heißen Sommerhalbjahren, gab es 2018 neben anhaltender, vorherrschender Dürre auch einzelne, schwere Unwetter, was die Diskussionen über den Klimawandel zusätzlich befeuerte. Doch ein einzelnes Sommerhalbjahr ist ein Wetter- oder Witterungsereignis; Klima ist erst eine Mittelbildung über ausreichend viele Sommerhalbjahre. Und Unwetter gehören (leider) seit Jahrtausenden zur unschönen Begleitmusik sehr warmer Sommerhalbjahre, außerdem treten sie zufällig auf; für eine eindeutige Häufung fehlen bislang eindeutige Anzeichen.

Mehr Sonnenstunden – mehr Wärme im Sommerhalbjahr

Deutschland liegt leider etwas näher zum Nordpol als zum Äquator. Nur im Sommerhalbjahr vermag hier die Sonne ausreichend Wärme und Licht zu spenden, und es ist folglich nur von April bis September mit zunehmender Sonnenscheindauer auch fast immer zunehmend wärmer. Hingegen ist der Einfluss der immer schneller steigenden CO2-Konzentration (Werte seit 1959 verfügbar) fraglich. Den recht engen Zusammenhang zwischen Sonnenscheindauer und Lufttemperaturen in Deutschland zeigt folgende Grafik:

Abbildung 6: Enge „Verzahnung“ zwischen den Sonnenstunden und den Lufttemperaturen im Sommerhalbjahr. Fast 60% der Variabilität der Temperatur in Deutschland im Sommerhalbjahr lässt sich mit der Sonnenscheindauer erklären; unsere Sommerhalbjahre erwärmten sich hauptsächlich, weil sie sonnenscheinreicher wurden. Als extrem sonnig können, bezogen auf das DWD-Mittel, alle Sommerhalbjahre mit mindestens 1400 Sonnenstunden gelten; diese sind in der Grafik ausgewiesen; denn wegen der sehr unterschiedlichen Größen der Lufttemperatur und der Sonnenscheindauer musste in Indexwerte umgerechnet werden. Das Rekord-Sommerhalbjahr 2018 war zugleich das sonnigste. Hingegen ist der Zusammenhang von CO2-Konzentration und Lufttemperaturen fraglich; denn in den 1970er Jahren sanken die Temperaturen trotz steigender CO2-Konzentrationen, und seit etwa 20 Jahren verlangsamte sich der Temperaturanstieg trotz beschleunigt steigender CO2-Werte.

Als besonders sonnenscheinreich erwiesen sich die Monate Mai und Juli 2018. Um den Zusammenhang zwischen Sonnenscheindauer und den Temperaturen des Sommerhalbjahres noch länger zurück zu verfolgen, muss man die Daten der Station Potsdam betrachten; denn für Deutschland insgesamt liegen nur bis 1951Werte vor:

Abbildung 7: Auch langfristig gilt: Kein Sommerhalbjahr war so sonnig wie 2018 – zumindest in Potsdam. Dort landete das Sommerhalbjahr von 1947 sowohl bei der Sonnenscheindauer als auch bei der Lufttemperatur auf Platz 2.

Über die Gründe der zunehmenden Besonnung lässt sich nur spekulieren. Neben geänderten Großwetterlagenhäufigkeiten, auf welche gleich noch eingegangen wird, kommen die Luftreinhaltemaßnahmen, die Sonnenaktivität selbst und die Austrocknung Deutschlands durch geänderte Landnutzung (Melioration), Bebauung und Versiegelung, in Betracht. Durch Letzteres fehlen intakte Böden und eine dichte Vegetation, was die Verdunstung und damit die Bildung von Wolken, Dunst oder Nebel erschwert.

Geänderte Großwetterlagenhäufigkeiten als Erwärmungsursache im Sommerhalbjahr?

Immer entscheidet die gerade herrschende Großwetterlage, welche Luftmasse nach Mitteleuropa gelangt. Wolkenarme Warmluft aus südlicheren Breiten ist eine wesentliche Voraussetzung für Hitze in Deutschland; doch auch bei Ost- und Zentralhochlagen kann es wegen der meist hohen Sonnenscheindauer sehr warm werden; Südwestlagen sind meist schwül und gewitterträchtig. Die im Winter zumindest im Flachland fast stets sehr milden West- und Nordwestlagen sowie die meist temperaturnormalen Nordlagen bringen hingegen wegen der vielen Wolken zu kühles, oftmals windiges und wechselhaftes Sommerwetter. Die nächste Grafik zeigt, wie sich die Häufigkeit dieser beiden gegensätzlichen Großwettertypen-Cluster in Relation zur Sommerhalbjahrestemperatur (Deutschland-Mittel) langfristig entwickelt hat:

Abbildung 8: Merkliche Häufigkeitsabnahme der im Sommerhalbjahr fast stets zu kühlen West-, Nordwest- und Nordlagen (dunkelblau); dafür häufigere Süd-, Südwest-, Südost- und Zentralhochlagen (rotbraun), welche meist zu warm ausfallen. Die Bestimmtheitsmaße beziehen auf das DWD-Deutschland-Temperaturmittel des Sommerhalbjahres, welches zur besseren Veranschaulichung ebenfalls in Indexwerte umgerechnet werden musste. Man beachte, dass der Zusammenhang zwischen den West-, Nordwest- und Nordlagenhäufigkeiten und der Temperatur stark negativ ist! Mit den geänderten Häufigkeitsverhältnissen der Großwetterlagen wurden unsere Sommerhalbjahre wärmer. Großwetterlagen-Klassifikation nach HESS/BREZOWSKY; die Daten für 2018 lagen noch nicht vollständig vor; so dass diese Grafik mit dem Sommerhalbjahr 2017 endet.

Das Sommerhalbjahr 2018 wies bis Ende Juli ungewöhnlich viele Ostwetterlagen auf; speziell im Mai, als mir 25 Tagen des Großwettertyps Ost ein neuer Häufigkeitsrekord seit 1881 aufgestellt wurde. Im Mai wirken diese – ganz anders als im Winter, meist deutlich erwärmend. Im August/September dominierten hingegen Zentralhoch- und Südwestlagen, welche gerade im Spätsommer stark erwärmend wirken. Diese besondere zeitliche Häufigkeitsabfolge der Großwetterlagen begünstigte auch eine hohe Sonnenscheindauer und trug ganz maßgeblich zu der enormen Wärme bei. Seit 1980 wird beim DWD außerdem die Objektive Wetterlagenklassifikation angewendet; diese erfolgt numerisch und liegt deshalb größtenteils schon vor. Am stärksten erwärmend wirken hier in der mittleren Troposphäre (500hPa) antizyklonale Lagen bei feuchter Atmosphäre; auch deren Häufigkeit erhöhte sich tendenziell merklich:

Abbildung 9: Mehr in der Höhe antizyklonale Großwetterlagen bei insgesamt feuchter Atmosphäre seit 1980 in Deutschland im Sommerhalbjahr. Diese wirken signifikant erwärmend. 2018 gab es mit mehr als 80 Tagen dieses Großwetterlagentyps einen neuen Häufigkeitsrekord.

Auf die Ursachen der geänderten Zirkulationsverhältnisse und Großwetterlagenhäufigkeiten kann im Rahmen dieses Beitrages nicht eingegangen werden. Interessierte Leser finden Näheres dazu in dem unlängst erschienenen Beitrag zu den Zirkulationsanomalien 2018 hier.

Der Wärmeinseleffekt heizt unseren Sommerhalbjahren ebenfalls ein

Über verschiedenste Wärmeinseleffekte (WI) wurde hier bei EIKE schon oft berichtet. Diese entstehen, wenn sich durch intensivere Landnutzung und/oder Bebauung die Vegetations- und Bodenverhältnisse ändern. Meliorationen und die landwirtschaftliche Intensivierung führen zu weniger Bodenfeuchte und damit ebenso zu weniger kühlender Verdunstung mit verminderter Wolken- und Nebelbildung wie Versiegelungen oder Bebauung. Letztere vermindern meistens auch die Albedo (Reflexionsvermögen, es wird mehr von dem einfallenden Sonnenlicht in Wärme umgewandelt; besonders bei dunklem Asphalt oder bei Solarpaneelen) und bremsen den kühlenden Wind. Wer in diesem Hitze-Sommerhalbjahr das Pech hatte, in einer Großstadt zu wohnen, war von diesen WI-Effekten besonders betroffen. WI-Effekte sind leider nicht mehr auf Großstädte beschränkt; dort aber am intensivsten und besonders in den Nächten spürbar. Während sich das Freiland in den Sommernächten angenehm abkühlt, geben die Gebäude und Straßenoberflächen mit ihrer gegenüber lockerem Mutterboden viel höheren Wärmekapazität nun die gespeicherte Wärme ab; gleichzeitig ist die kühlende Belüftung durch den Nachtwind eingeschränkt. Auch deshalb erwärmten sich Stationen, welche in solchen Wärmeinseln stehen, viel stärker als solche in kleineren Städten. Als Extrembeispiel sei hier der Vergleich mit den Original-Daten des DWD von Frankfurt/Main Flughafen und dem ländlicheren Gießen gezeigt:

Abbildung 10: In den letzten 50 Jahren erwärmte sich das boomende Frankfurt mit seinem ausufernden Flughafen im Sommerhalbjahr viel stärker als das ländlichere Gießen. War Frankfurt anfangs nur um gut 0,5 Grad wärmer, sind es heuer fast 2 Grad.

Zusammenfassung: Dieses Sommerhalbjahr 2018 brach viele, doch nicht alle Rekorde. Es war das wärmste, aber keinesfalls das längste und auch nicht das trockenste seit Aufzeichnungsbeginn im Jahre 1881. In den letzten Jahrzehnten häuften sich sonnige, heiße Sommerhalbjahre in Deutschland. Bislang fehlen jedoch eindeutige Anzeichen für eine Häufung sommerlicher Unwetter oder Dürren in Deutschland. Neben einer längeren Sonnenscheindauer trugen geänderte Großwetterlagenhäufigkeiten und verschiedenste Wärmeinseleffekte ganz wesentlich zur Erwärmung des Sommerhalbjahres bei. Über den zeitlichen Verlauf dieses denkwürdigen Sommerhalbjahres und dessen Auswirkungen auf Natur und Landwirtschaft wird im Teil 2 dieses Beitrages berichtet werden.

Stefan Kämpfe, Diplomagraringenieur, unabhängiger Natur- und Klimaforscher