Das Bündel schwerwiegender Nachteile hat eine 136 Jahre alte Ursache: Die Batterien
Die Angebote der Industrie an E-Autos überzeugten bisher nur wenige Kunden, was nicht weiter verwundert, wenn man die hohen Preise, das hohe Gewicht, die kläglichen Reichweiten – die im Winter nochmals abnehmen -, die langen Ladezeiten und die begrenzte Lebensdauer der extrem teuren Batterien betrachtet. Autofahrer sind nicht dumm und es spricht für sie, dass sie sich auch nicht für dumm verkaufen lassen.
Eine fachliche Bewertung der Situation um die Entwicklung von Batterien und die Rolle der Politik hat Prof. Dr.rer.nat. Frank Endres, Leiter des Instituts für Elektrochemie an der T.U. Clausthal 2014 veröffentlicht:
„Die weitgehend auf Erinnerungsschwäche beruhende neue Begeisterung von Politikern für das alte Thema ignoriert weiterhin das Fehlen zuverlässiger und kostengünstiger Antriebsbatterien. Das ist seit etwa 100 Jahren der Fall, als mit der Erfindung des Automobils sofort auch der Elektroantrieb Anwendung fand. Nach einigen Jahren hängte der Verbrennungsmotor, der seine Energie aus den flüssigen Kohlenwasserstoffen holt, den E-Antrieb hoffnungslos ab. Seither arbeiten Generationen von Experten der physikalischen Chemie an der Verbesserung der Akkumulatoren. Alternativ versucht man den Menschen einzureden, dass sie eh kein Auto bräuchten, das mehr als 100 km Reichweite hat. Sie sollen für längere Strecken schließlich die Bahn nutzen.
Lebensdauer, Alterung und Betriebssicherheit von Batterien
Alle Batterien unterliegen unvermeidbar einer zyklischen (gemäß der Zahl der Lade/Entladezyklen) und kalendarischen Alterung. In den letzten Jahren waren Lithiumionen-Batterien in aller Munde. Lithium ist jedoch ein sehr reaktives und auch nicht sehr häufiges Metall, das mit jedem bekannten Elektrolyten chemisch reagiert. Solche Batterien sind daher nicht dauerhaft stabil. Lässt man eine Lithiumionenbatterie mehrere Jahre liegen, bläht sie sich im Laufe der Zeit wegen der Alterung auf. Wird sie dann stark belastet, kann sie zu brennen beginnen. Auch beim wiederholten Laden/Entladen leidet die Batterie – ihre Materialien werden durch mechanischen Stress während der zyklischen Belastung immer mehr zerstört.
Wir haben post-mortem-Analysen von Batterien, die gebrannt hatten, durchgeführt und konnten sehen, dass sich in den Batterien sog. „hotspots“ bildeten, die schließlich derart viel Wärme erzeugten, dass die Batterie in einen instabilen Überhitzungszustand geriet.
Wegen der kalendarischen Alterung liegt die maximale Lebensdauer bei 6 Jahren, aber auch nur 3 Jahre Lebensdauer können vorkommen.
Und ein gänzlich neues Batteriekonzept ist so schnell nicht zu erwarten.
Die Energiedichte
In der Frage der erreichbaren Energiedichte schlägt leider die Thermodynamik unbarmherzig zu. Die elektrochemische Spannungsreihe erlaubt maximal 6 Volt für ein Elektrodenpaar; das wäre dann aber eine (hochgefährliche) Lithium/Fluor-Batterie, deren technische Umsetzung und Verwendung kaum vorstellbar sind. Voll geladene Lithiumionen-Akkus heutiger Bauart haben bei einer Einzelzelle eine Spannung von 4,2 Volt. Mehr ist schwer zu erreichen, weil man noch keine Elektrolyte gefunden hat, die für sog. „5-Volt-Batterien“ geeignet sind. Es ergibt sich wegen des spezifischen Gewichts der Batteriematerialien derzeit eine maximale Energiedichte von 0,3 kWh/kg; technisch erreichen kann man heute nicht mehr als 0,15 kWh/kg.
Kohlenwasserstoffe enthalten dagegen rund 12 kWh/kg, wovon ein guter Dieselmotor ca. 5 kWh in mechanische Energie umsetzt.
Wirkungsgrad-bereinigt schneiden Kohlenwasserstoffe bezüglich der Energiedichte also mindestens 30-mal besser ab als Li-Ionen-Akkumulatoren.
Lithium-Luft-Batterien wurden als die Lösung aller Probleme angepriesen, und man sprach von bis zu 15 kWh/kg, was aber eine höchst unseriöse Zahl ist, da sie nur auf das Lithium alleine bezogen wurde und die andere Elektrode, der Elektrolyt, das Gehäuse usw. nicht berücksichtigt wurden. Im Labor erreichen Lithium/Luft-Batterien 1 kWh/kg, sie altern aber rasch, und eine Lösung für dieses Problem erscheint in weiter Ferne. Ein Einsatz ist frühestens in 20 Jahren zu erwarten, falls überhaupt.
Mit Unterstützung des BMBF arbeitet unser Institut an der TU Clausthal grundlegend an Aluminium/Luft und Silizium/Luft-Batterien. Die denkbaren Energiedichten liegen bei 1 – 4 kWh/kg, aber das ist Grundlagenforschung und ebenfalls weit von einer kommerziellen Nutzung entfernt.
Vielleicht können Lithium/Schwefel-Batterien als Nächstes vermarktet werden. Im Labor erreichen sie schon 1 kWh/kg. Sie altern aber schnell und die nutzbare Energiedichte liegt bei ca. 0,3 kWh/kg, was im Vergleich zu Lithiumionenbatterien immerhin um einen Faktor 2 besser wäre.
Ich rechne eher mit einer langsamen Evolution im Batteriesektor als mit einer schnellen Revolution.
Die Kosten
Wirklich gute Lithiumionen-Akkus, wie sie z.B. im Modellflug verwendet werden, kosten zwischen 1.000 und 1.500 €/kWh und selbst die „billigen“, wie sie in Elektroautos genutzt werden, kosten heute 500 €/kWh. Auf die immer einmal wieder ins Feld geführten 100 – 200 €/kWh werden wir m.E. noch ein wenig warten müssen, und bei der angepriesenen Speicherbatterie eines Elektroautoherstellers mit ca. 300 €/kWh muss man die Langzeitqualität abwarten.
Das Fazit der näheren Betrachtung der elektrochemischen Batteriearten, die mindestens eine gewisse Entwicklungsreife aufweisen, als mögliche Speicher zur großtechnischen Netzstabilisierung lautet somit „nicht langzeitbeständig“ und „unbezahlbar“.
(Ende des Zitats von Prof. Endres)
Prof. Helmut Alt, FH Aachen, hat den Vergleich von Benzin- bzw. Dieselautos mit Elektroautos auf den Punkt gebracht:
„Einen 70-Liter Tank, der fast nichts kostet, länger hält als das Auto und ohne Lebensdauerverlust in 3 Minuten geladen ist, durch Batterien zu ersetzen, ist ein Wunschtraum, der aber nach allen derzeit bekannten physikalischen und chemischen Erkenntnissen heute und in denkbarer Zukunft nicht realisierbar ist.“
Die Batterieproduktion ist alles andere als umweltfreundlich
Bei allen Energie konsumierenden Geräten und Anlagen sollte man sich auch deren energetische Entstehungsgeschichte näher ansehen. Der SPIEGEL 34/2017 zitierte eine Studie des schwedischen Umweltinstituts IVL. „Was Fachleuten grundsätzlich bekannt ist, aber gern verschwiegen wird: Batteriezellen sind nicht nur extrem schwer und teuer, ihre Herstellung verschlingt auch Unmengen an Energie. Für die Produktion eines 100-kWh-Akkus nennt die Untersuchung eine Klimabelastung von 15 bis 20 Tonnen Kohlendioxid. Ein sparsamer Kleinwagen mit Benzin- oder Dieselmotor müsste bis zu 200.000 Kilometer fahren, um so viel Klimagas in die Luft zu blasen“.
Diese Zahlen werden durch eine Studie des Instituts für Energie- und Umweltforschung in Heidelberg aus dem Jahre 2014 bestätigt, nach der die Produktion einer Kilowattstunde Batteriekapazität 125 kg CO2 „kostet“. Das sind für eine 100-kWh-Batterie 12,5 Tonnen. Dazu kämen noch die CO2-Emissionen, die bei der Produktion des Elektromotors anfallen.
In einem weiteren Artikel des SPIEGEL 32/2017 wird über die Gewinnung von Lithium aus dem ausgetrockneten Salzsee im Norden der Atacama-Wüste in Chile berichtet: „Das Verfahren verschlingt enorme Mengen Wasser – in einer der trockensten Gegenden der Welt. Es ist ökologisch höchst umstritten, ökonomisch aber hoch lukrativ.“
Feuer !
Akkus, die brennen können, gab es bei den braven, schweren Bleiakkus, die in unseren nichtelektrifizierten Autos immer noch treu ihre Dienste verrichten, niemals. Seit den Lithium-Ionen-Batterien – eine große Erfolgsgeschichte – hat sich das geändert. Als erstes gingen Laptops reihenweise in Flammen auf. Dann traf es auch mehrfach Autos, die mit diesen Stromspeichern angefüllt waren: So verabschiedete sich am 4.1.2016 ein Tesla Modell S an einer norwegischen Ladestation in einer spektakulären Flammenshow. Der Brand konnte nicht gelöscht werden.
Aber die Alarmnachrichten berücksichtigen nicht, dass inzwischen Hunderte von Millionen Li-Ionenbatterien in Gebrauch sind und diese Unfälle daher immer noch selten sind. Aber neue Gefahren rufen immer neue Gegenmaßnahmen hervor, weshalb die Internationale Zivilluftfahrt-Organisation ICAO Anfang ab April 2016 die Mitnahme aller Geräte mit Lithium-Ionen-Akkus im aufgegebenen Fluggepäck verboten hat.
Je näher man den physikalischen Grenzen in der Batterietechnik kommt, desto kritischer scheint es für die Benutzer zu werden. Ob deshalb die Hoffnungen auf Batterietechnologien mit wesentlich höheren Energiedichten so ihr Ende finden, wird sich zeigen.
U-Boote zeigen die Grenzen der Batterietechnologie
Einen zwar indirekten, aber sehr klaren Beweis dafür, dass es bisher keine dem Blei-Säure-Akku in jeder Hinsicht überlegene Batterietechnik für Antriebszwecke gibt, zeigen die militärischen Entwicklungen im U-Boot-Bau. Obwohl den Marinen sowohl in den USA als auch in der Sowjetunion vergleichsweise enorme Mittel zur Verfügung gestanden haben, ist es beiden bis heute nicht gelungen, die Bleibatterien in den konventionellen U-Booten (also denen, die keinen Nuklearantrieb besitzen) durch eine überlegene Batterietechnik zu ersetzen. Man kann davon ausgehen, dass in den vergangenen Jahrzehnten in den Laboratorien dieser Länder sowohl kontinuierlich als auch massiv an entsprechenden Entwicklungen gearbeitet wurde – und auch noch wird. Das Ergebnis dieser Anstrengungen, gegen die das derzeitige Engagement der zivilen Industrie eher bescheiden anmutet, ist die Erkenntnis, dass nach wie vor die Bleibatterie die beste Lösung darstellt.
Wer zum Beispiel den Museumshafen im holländischen Zandvoort besucht und dort das große konventionelle russische U-Boot besichtigt, kann durch einen Blick in den jetzt leeren, riesigen Bauch des Bootes einen Eindruck von der Masse der Bleiakkus gewinnen, die dort einst die Fahrt im getauchten Zustand angetrieben haben. In diesem Punkte hat sich gegenüber der U-Boot-Antriebstechnik für die Unterwasserfahrt im 2. Weltkrieg bis heute einzig und allein die schiere Masse der Bleiakkus im Rumpf der konventionellen U-Boote erhöht. Niemals würde die Marine die Verwendung von Lithium-Ionen-Batterien auf U-Booten erlauben, so lange die nicht vollständig überwundene Brandgefahr dieser Speicher weiter besteht.
Dies war der Grund für die Entwicklung des „außenluftunabhängigen Antriebs“ der ab März 2004 eingeführten deutschen U-Boote der Klasse 212 A. Kernstück dieser U-Boote ist ein Antrieb mit Brennstoffzellen. Die Brennstoffzellen sind elektrochemische Wandler, die mit Wasserstoff aus Metallhydrid-Speichern und flüssigem Sauerstoff aus Drucktanks versorgt werden und dadurch Gleichstrom erzeugen. Das „Verbrennungsprodukt“ ist reines Wasser.
Weil die Brennstoffzelle nicht in kürzester Zeit ihre Leistung verändern kann, muss deren Strom in der Bordbatterie zwischengespeichert und dann dem Antrieb zugeleitet werden. Und diese Bordbatterie ist – ein Blei-Säure-Akku. Damit kennt man den modernsten Stromspeicher, den die Marineschiffe heute besitzen. Es gibt immer noch nichts Besseres. Und das seit seiner Erfindung durch den französischen Physiker Gaston Plante im Jahre 1869.
Oder doch ? Die Torpedos der U-Boote werden mit einem anderen Batterietyp ausgerüstet: Silber-Zink-Batterien. Für die Militärs eine gute Wahl, aber für den Antrieb von Autos leider unbezahlbar.
Bringen Batterie-Neuentwicklungen den Durchbruch ?
Die zahlreichen in der Presse erwähnten neuen Batterieentwicklungen sollte man also vor dem Hintergrund der trotz ihrer wenig eindrucksvollen Speicherkapazität nach wie vor in militärischen Anwendungen favorisierten Blei-Säure-Akkus betrachten. Folgendes gab es in letzter Zeit zu lesen:
allem geht es dabei um deren Kosten, Effizienz und Sicherheit. Das DLR- Institut für Technische Thermodynamik in Stuttgart arbeitet im Verbundprojekt „Li-EcoSafe“ daran.
Es gibt eine Reihe weiterer Entwicklungsarbeiten an verschiedenen
Batterietypen, aber vor allem gibt es eindrucksvolle Ankündigungen für die
angestrebten Ladungskapazitäten, Gewichte und Kosten. Dabei wird oft unglaublich übertrieben. „Der SPIEGEL unternahm im Februar 2017 einen Praxistest mit dem E-Mobil Zoe von Renault. Bei der Autobahn-Richtgeschwindigkeit von 130 km/h war an die im Normzyklus ermittelte Reichweite von 400 km nicht mehr zu denken. Übrig blieben etwa 150 km. Auch die wundersamen Reichweiten der teuren Tesla-Modelle werden in einem realistischen Reiseszenario nicht annähernd erzielt. In der amtlichen Kriechfahrt der Prüfzyklen hat der Elektroantrieb perfekte Bedingungen, um sparsam zu sein. Fernreisen mit heute auf Autobahnen üblichen Geschwindigkeiten zehren die Batterie dagegen im Schnellgang aus“. (SPIEGEL 34/2017: „Der große Schwindel mit den Elektroautos“.)
Derartige Angebereien und Übertreibungen sind typisch für eine Situation, in der es staatliche Fördermittel für Innovationen gibt. Wer nicht bei den behaupteten Projektergebnissen bedenkenlos übertreibt, muss befürchten, von den Beamten kein Geld zu bekommen.
(Der Autor war 30 Jahre im Bundesforschungsministerium in der Projektförderung tätig. Die obige Aussage beruht auf eigener Erfahrung.)
Die oben zitierten Aussagen von Prof. Endres sind dagegen nüchterne
Beschreibungen der Realität. Seine Bewertungen der politischen Zielsetzungen und Erwartungen sollten ernst genommen werden.
Es gibt somit reihenweise gute Gründe dafür, dass auch die derzeitige erneute Beschwörung des Elektroantriebs für Automobile das Schicksal aller vorangegangenen Versuche teilen wird: Die stillschweigende Aufgabe dieser Idee.
Damit das aber nicht erneut geschieht, scheint es jetzt der Plan der Politiker zu sein: Wir zwingen die widerspenstige Automobilindustrie mit immer schärferen Abgas-Grenzwerten, sich dem Elektroauto zuzuwenden und wir subventionieren deren Anschaffung, damit auch die widerspenstigen Autofahrer ihre Zurückhaltung aufgeben. Also wieder einmal Planwirtschaft, die bekanntlich noch nirgends funktioniert hat.
Die Physik gibt keinen Idiotenrabatt
Unsere Medien haben beschlossen, den von den Autokäufern weitgehend boykottierten Durchbruch der Elektroautos, den sie ständig beschwören, propagandistisch herbeizuschreiben. Kürzlich las man sogar von einem „Quantensprung“ in der Batterieentwicklung, der nun bevorstehen würde. Die Quanten wollen aber nicht springen. Dass die Entwicklung einer neuen Technik sehr viel länger dauert, als eine Legislaturperiode des Parlaments, haben die Politiker, die finanzielle Förder-Töpfe mit Steuergeld verwalten und einsetzen, zu ihrem Leidwesen schon immer erfahren müssen. Niemals stellt sich ein Erfolg in 4 Jahren ein. Wenn überhaupt, dauert es mindestens 12 bis 15 Jahre. Misserfolge allerdings zeigen sich schneller, was dazu führt, dass weitere Mittel den bereits verlorenen Millionen hinterher geworfen werden, um die Pleite zeitlich hinauszuschieben – zumindest in die nächste Legislaturperiode, wenn ein anderer auf dem Ministerstuhl sitzt.
Die Entwicklung besserer, neuer Batterien allerdings vollzieht sich in einem Sektor der Physik, in dem es den Forschern und Entwicklungsingenieuren sehr schwer gemacht wird, Erfolge oder gar Durchbrüche zu erzielen. Die mit 136 Jahren nahezu unendliche und erfolgsarme Geschichte der Antriebsbatterien für Autos zeigt vielmehr, dass man eine Technologie für langlebige, bezahlbare und zuverlässige Batterien schon zu Beginn dieses Zeitraums ausgewählt hat – gemeint ist die Blei-Säure-Batterie – und seither mit ihren Limitierungen (Gewicht, und Speicherkapazität) leben muss. Man hat seither eine unbekannte, aber gewiss riesenhafte Menge Geld ausgegeben, um neue, in jeder Hinsicht überlegene Konzepte für die elektrochemischen Speicher zu finden und zur Einsatzreife zu bringen – das einzige, bedingt brauchbare Ergebnis von mehr als 130 Jahren Arbeit scheint die Lithium-Ionenbatterie zu sein, die zumindest Anwendungen mit geringem Strombedarf wie Laptops, Elektrowerkzeuge, Mobiltelefone usw. erobert hat und für diese einen großen Fortschritt darstellt.
Dass diese Technik aber nicht im Entferntesten den ganz normalen Ansprüchen von Autofahrern an ihre Fahrzeuge genügt, ist ebenso klar. Daran ändert auch die nahezu religiöse Verehrung der Tesla-Autos durch eine Gemeinde von Anhängern nichts, die sich damit als Öko-Vorbilder präsentieren wollen und dafür gerne extreme Kosten und reale Gebrauchsnachteile in Kauf nehmen.
Wie es tatsächlich um die Chancen und physikalischen Möglichkeiten einer Realisierung neuer, überlegener Batterietechnologien bestellt ist, beschrieb Prof. Endres. Die Physik ist unpolitisch und bietet Ideologen keine Rabatte.
Gasantrieb: Die bessere Alternative zum Elektroauto
Die politische Verblendung, Autos unbedingt elektrisch antreiben zu wollen, ignoriert eine schon lange eingeführte und bewährte Technik, die unter Umweltgesichtspunkten weitaus besser ist: Autogas und Erdgas. Es gibt dafür bereits ein bundesweites Versorgungsnetz; die Stickoxid-Emissionen liegen in der Nähe des Nullpunktes und wer sich um die CO2-Emissionen sorgt: Sie liegen um 20% niedriger als es die verbreiteten, heutigen Antriebskonzepte können. Die Umrüstung älterer PKW auf diesen Antrieb ist Stand der Technik, aber es gibt selbstverständlich eine Reihe von Autotypen, die schon ab Werk dafür eingerichtet sind.
Sämtliche Nachteile der E-Autos gibt es hier nicht: Die Anschaffung ist ungleich billiger, Reichweitenprobleme existieren nicht, die teure Einrichtung einer Lade-Infrastruktur entfällt, das Auftanken ist einfach und rasch erledigt, das erhebliche, energiefressende Zusatzgewicht einer Großbatterie entfällt und es gibt weiterhin einen nutzbaren Kofferraum. Zudem steigt die Lebensdauer der Motoren.
In Deutschland hat der Kunde die Wahl zwischen zwei Gasantrieben:
Erdgas (CNG) und Autogas (LPG)
Die Motoren können alle drei Brennstoffe nutzen.
Das Tankstellennetz ist vor allem für Autogas bereits stark ausgebaut.
Die Branche macht dazu folgende Angaben:
Autogas LPG Erdgas CNG
Tankstellen (D): 6561 866
Davon auch mit Benzin: 5093 711
Umrüster: 1250 120
Die Vorteile des Gasantriebs sind beachtlich:
Erdgas:
Benzin)
Autogas:
Vergleich der Reichweite, die mit 10 Euro im Tank erreicht wird:
Anschaffung oder Nachrüstung ?
In der Anschaffung ist ein Erdgasfahrzeug etwas teurer als ein Autogasfahrzeug. Auch die Nachrüstung kostet bei einem Erdgasfahrzeug mehr. Die Nachrüstung ist
allerdings in erster Linie der Regelfall bei Autogas.
Als Faustformel für eine Entscheidung über eine Nachrüstung gilt, dass nach etwa zwei Jahren diese Investition durch die Einsparungen ausgeglichen ist.
Von da an fährt man also sowohl billiger als auch umweltfreundlicher.
Die steuerliche Behandlung von Autogas – eine Fehleinscheidung offenbart die seltsame Vorliebe für den Elektroantrieb
Es gab eine Steuerbegünstigung für Autogas, die von der Bundesregierung zeitlich verkürzt werden sollte. Dies versuchte sie mit dem Entwurf eines Zweiten Gesetzes zur Änderung des Energiesteuer- und des Stromsteuergesetzes, der ein Auslaufen dieser Steuervergünstigung zum Jahresende 2018 vorgesehen hatte.
Die Steuerbegünstigung für Erdgas CNG wurde entspr. dem Ursprungsentwurf bis Ende 2026 verlängert, aber bereits ab 2024 sukzessive abgesenkt.
Das blinde Ignorieren der Chance des Erdgasantriebs und auch der weiterhin vorhandenen physikalischen und finanziellen Barrieren der Elektroautos und deren absehbare erneute Pleite ist keine verantwortungsvolle Politik.
Die Blamage der von der Regierung verschuldeten unaufhaltsam und stetig ansteigenden Treibhausgas-Emissionen Deutschlands – trotz ihres peinlichen „Klimaschutz-Vorreiter“-Selbstlobs – scheint noch nicht genug zu sein. Es wäre aber nicht das erste Mal, dass sich ein Regierungsprogramm als eine Wiederaufführung des Märchens von des Kaisers neuen Kleidern erweist.