Energiewende ohne Strom-Speicher unmöglich, mit Speicher – unbezahlbar
1) Holger Douglas: Im Landtag zu Baden-Württemberg läuft die Diskussion heiß, weil sich die rot-grüne Landesregierung zu wenig für Speichertechnologien stark mache, so der Vorwurf. Immerhin hat man eine Stromlücke erkannt, und bis zu oberen Grünen scheint es vorgedrungen zu sein, daß es auch erhebliche Probleme mit Stromspeichern gibt. Wichtig ist es, einen Blick auf die Speichertechnologien zu werfen. Prof. Frank Endres, Sie forschen an neuen elektrochemischen Speichertechnologien. Welche gibt es denn? Was können die, und über welche Kapazitäten verfügen die?
Frank Endres: Ein Wechselstromnetz wird über die Frequenz geregelt, in Deutschland sind das 50 Hz. Dazu laufen die Turbinen in Kohle-, Kern- und Wasserkraftwerken phasensynchron mit einer konstanten Umdrehungsgeschwindigkeit. Die „Kunst“, ein Netz stabil zu halten, besteht nun darin, Frequenz und Phase aller Kraftwerke aufeinander anzupassen, und zwar auch bei wechselnder Last.
In Deutschland werden ca. 30 GW Grundlast benötigt, um diese Bedingung zu erfüllen. Weder Windkraft- noch Solaranlagen können rund um die Uhr eine konstante Grundlast liefern, von der Phasensynchronität ganz zu schweigen. Will man dieses Ziel erreichen, muss man das Netz so umbauen, dass Speicher zwischen 20 und 100 TWh vorhanden sind und davon gespeiste elektronische virtuelle Schwungräder die Funktion der Turbinen übernehmen. Das wäre ein Komplettumbau der Stromversorgung, technisch bei Weiterentwicklung der Elektrotechnik sogar vorstellbar.
Wenn man in Deutschland alle Möglichkeiten, Pumpspeicherkraftwerke zu bauen, nutzt, erreicht man vielleicht 0,15 TWh an Speicherkapazität, das ist natürlich viel zu wenig. Es bleiben dann nur noch chemische und elektrochemische Speicher übrig, die in der Größenordnung bis 100 TWh sogar denkbar sind.
Im „power to gas“ Ansatz stellt man mit dem Überschuss-Strom Wasserstoff her und wandelt den in Methan um, der im Erdgasnetz gespeichert wird. Flauten möchte man so mit Gaskraftwerken überbrücken, wenn sich denn jemand finden lässt, der Gaskraftwerke baut und betreibt. Die modernsten Gaskraftwerke Irsching 4 und Irsching 5 werden nun ja abgeschaltet.
Andere Ansätze sollen Brennstoffzellen zur Rückverstromung von Wasserstoff nutzen.
Das ist technisch alles vorstellbar, nur wird der dann zu zahlende Strompreis alleine aufgrund der Alterung der Anlagen oder chemischen Verbindungen irgendwo zwischen 1 und 2 EUR pro kWh liegen. Ich erwarte, dass in einem solchen Szenario auch Batterien (Akkus) für die Netzstabilität erforderlich sind, weil die Elektrolyseanlagen ein stabiles Netz benötigen. In jedem dieser Szenarien werden die wiederkehrenden Kapitalkosten (wegen Alterung) den Strompreis auf weit über 1 EUR/kWh treiben – das wäre unvermeidbar. Der Traum vom kostenlosen Strom, wenn erst einmal genügend Windkraft- und Solaranlagen aufgestellt sind, wird für unabsehbare Zeit ein Traum bleiben.
2) Holger Douglas: Batterien haben nicht nur keine große Speicherfähigkeit, sondern sie altern auch relativ schnell. Warum geht das so schnell und ist absehbar, ob Sie diese elektrochemischen Prozesse in der Batterie aufhalten können?
Frank Endres: Ja, alle Batterien unterliegen einer zyklischen und kalendarischen Alterung, das ist unvermeidbar.
In den letzten Jahren waren Lithiumionen-Batterien in aller Munde. Lithium ist ein sehr reaktives dazu nicht allzu häufiges Metall, das mit jedem bekannten Elektrolyten chemisch reagiert. Solche Batterien sind daher nur kinetisch stabil. Lässt man eine Lithiumionenbatterie mehrere Jahre liegen, bläht sie sich im Laufe der Zeit wegen der Alterung auf. Wird sie dann stark belastet, kann sie zu brennen beginnen. Auch beim wiederholten Laden/Entladen leidet die Batterie, vereinfacht gesagt werden die Materialien in der Batterie durch mechanischen Stress während der zyklischen Belastung immer mehr zerstört.
Wir haben post-mortem-Analysen auch von Batterien, die brannten, durchgeführt und konnten sehen, dass sich in den Batterien sog. „hotspots“ bildeten, die irgendwann so viel Wärme produzierten, dass die Batterie einem thermischen „Runaway“ unterlag. Bei Zink-Luft-Akkumulatoren nimmt die dort verwendete Kalilauge Kohlenstoffdioxid aus der Luft auf, hier altert also der Elektrolyt und neue Konzepte sind erforderlich. Bei Bleibatterien (wie im Auto) altern die Elektroden, da bei der wiederholten Auflösung und Abscheidung von Blei immer ein wenig Blei verloren geht.
Es kann auch passieren, dass es in einer Zelle irgendwann einen Kurzschluss gibt und die Spannung zusammenbricht. Will man Bleibatterien für die Speicherung von „regenerativem“ Strom nutzen, kann man diese bei der heutigen Technik maximal 1500x aufladen und wieder entladen.
Wegen der kalendarischen Alterung liegt die maximale Lebensdauer bei 6 Jahren, aber auch nur 3 Jahre Lebensdauer sind nicht überraschend. Es gibt Hersteller, die mit 30 Jahren Lebensdauer ihrer Batterien werben und 10 Jahre Garantie geben, meist kleinere Firmen. Ich wäre da ein wenig vorsichtig, denn Papier ist geduldig.
Ein gänzlich neues Batteriekonzept ist so schnell nicht zu erwarten. Hätte die deutsche Politik die Elektrochemie vor gut 20 Jahren nicht beinahe abgewickelt, könnte Deutschland heute eine führende Nation in der Batterietechnologie sein, wir haben aber eher einen Rückstand von mindestens 10 Jahren.
3) Holger Douglas: Sie forschen an Materialien für mögliche neue Batterien. Ein durchschlagender Erfolg ist der Batterieforschung bislang aber noch nicht gelungen, sprich die Energiedichte um ein paar tausendfach zu erhöhen, wie es notwendig ist, um Autos richtig antreiben zu können. Warum macht es uns hier die Natur so schwer, geeignete Paarungen von Materialien zu finden, die gut für eine Stromspeicherung queren? Sie hat doch auch die genialen Kohlenwasserstoffe mit einer ungeheuren Energiedichte auf die Bühne gebracht, die Autos, lange Güterzüge und 500 Tonnen schwere Flugzeuge antreiben kann?
Frank Endres: Hier schlägt die Thermodynamik leider unbarmherzig zu. Die elektrochemische Spannungsreihe erlaubt maximal 6 Volt für ein Elektrodenpaar, das wäre eine (hochgefährliche) Lithium/Fluor-Batterie, deren technische Umsetzung und Verwendung sind für mich kaum vorstellbar.
Voll geladene Lithiumionen-Akkus heutiger Bauart haben bei einer Einzelzelle eine Spannung von 4,2 Volt, mehr ist schwer zu erreichen, weil man noch keine Elektrolyte gefunden hat, die für die sog. „5-Volt-Batterien“ geeignet sind. Es ergibt sich wegen des spezifischen Gewichts der Batteriematerialien aktuell leider eine maximale Energiedichte von 0,3 kWh/kg, technisch erreichen kann man heute nicht mehr als 0,15 kWh/kg.
Kohlenwasserstoffe enthalten dagegen rund 12 kWh/kg, wovon ein guter Dieselmotor ca. 5 kWh in mechanische Energie umsetzt. Wirkungsgrad-bereinigt schneiden Kohlenwasserstoffe bzgl. der Energiedichte also mind. 30x besser ab.
Energiedichten von 1 – 5 kWh/kg sind nur mit Metall/Luft-Batterien denkbar. Relativ leicht herstellbare Zink/Luft-Batterien erreichen schon bis zu 0,5 kWh/kg, aber die Alterung des Elektrolyten ist das zentrale Problem. Neue Konzepte sind in der Erforschung, mit einem Markteinsatz ist frühestens in 5 Jahren zu rechnen, und da am ehesten noch aus US-amerikanischer Fertigung.
Lithium/Luft-Batterien waren in aller Munde, und man sprach von bis zu 15 kWh/kg, was aber eine unseriöse Zahl ist, da sie nur auf das Lithium alleine bezogen wurde, die andere Elektrode, der Elektrolyt, Gehäuse usw. nicht berücksichtigt wurden. Im Labor erreichen Lithium/Luft-Batterien 1 kWh/kg, sie altern aber massiv, und eine Lösung für dieses Problem erscheint in weiter Ferne. Ein Einsatz ist frühestens in 20 Jahren zu erwarten, falls überhaupt.
Wir arbeiten mit Unterstützung des BMBF sehr grundlegend an Aluminium/Luft und Silizium/Luft-Batterien. Die denkbaren Energiedichten liegen bei 1 – 4 kWh/kg, aber das ist alles sehr grundlegend und ebenfalls weit von einer kommerziellen Nutzung entfernt.
Vielleicht können Lithium/Schwefel-Batterien als Nächstes vermarktet werden. Im Labor erreichen sie schon 1 kWh/kg. Sie altern aber schnell, und die nutzbare Energiedichte liegt bei ca. 0,3 kWh/kg, was im Vergleich zu Lithiumionenbatterien aber immerhin um einen Faktor 2 besser wäre. Ich rechne eher mit einer langsamen Evolution im Batteriesektor als mit einer schnellen Revolution.
Dazu kommt das Kostenproblem. Wirklich gute Lithiumionen-Akkus, wie ich sie im Modellflug verwende, kosten zwischen 1.000 und 1.500 EUR/kWh, und selbst die „billigen“, wie sie in Elektroautos genutzt werden, kosten heute 500 EUR/kWh. Auf die immer mal wieder ins Feld geführten 100 – 200 EUR/kWh für gute Lithiumionenbatterien werden wir m.E. noch ein wenig warten müssen. Kürzlich veröffentlichte Zahlen seitens eines Lobby-Verbandes, bis ca. 2030 würden nur noch 5 Cent für die Speicherung von 1 kWh Strom zu bezahlen sein, kann ich nur mit Schönrechnerei nachvollziehen…..
….6) Holger Douglas: Sie machen auf eine weitere möglicherweise gefährliche Folge der Offshore-Windkraftanlagen in der Nordsee und Ostsee aufmerksam. Der Stahl muss in dem aggressiven Seewasser vor Korrosion geschützt werden. Dazu werden jetzt Aluminiumverbindungen mit giftigen Elementen benutzt. Warum und was geschieht dabei?
Frank Endres:Korrosion begleitet die Technik schon seit jeher. Nach Schätzungen der DECHEMA kostet Korrosion jedes Jahr weltweit 3,3 Billionen US-Dollar. Reine Metalle und auch Stähle korrodieren jedoch unterschiedlich. Man könnte den Sockel einer offshore-Windkraftanlage bspw. aus einem gegen Seewasser resistenten Edelstahl bauen, das wäre durchaus vorstellbar.
Neben einer weiteren Kostenexplosion haben Edelstähle aber nicht immer die Festigkeit, die benötigt wird. Also sucht man nach einem günstigen Material mit ausreichender Festigkeit. Korrodiert dieses, wird es durch Schutzschichten und Opferanoden geschützt. Welche Kombination bei offshore-Anlagen eingesetzt wird, weiß ich nicht, dazu müsste man den Hersteller konkret befragen.
Häufig eingesetzt werden bei Süßwasser Magnesium-Aluminium-Legierungen, die in Seewasser zu schnell korrodieren, oder Zink-Legierungen für Seewasser. Eine AZ91-Legierung (Magnesium mit ca. 9% Aluminium und 1% Zink) verhält sich in Seewasser bspw. wie eine Brausetablette, in Süßwasser ist die Korrosion eher langsam. Reines Zink ist in Seewasser viel zu reaktiv, die Korrosion wird daher durch Legierungszusätze verlangsamt. Warum nicht die Hersteller der offshore-Anlagen um Auskunft bitten? Die müssen die Zusammensetzung der Opferanoden ja kennen.
Wir bearbeiteten mal ein Projekt der Deutschen Bundesstiftung Umwelt, in welchem wir nach einem Ersatz für Zink als Beschichtungsmaterial für Stahl suchten. Zinkionen sind in hoher Konzentration ökotoxisch und beeinträchtigen Fische. Wir arbeiteten an Aluminiumbeschichtungen, weil Aluminium eine Oxidschicht bildet, die das Metall darunter vor Korrosion schützt.
Die beteiligte Firma verlor irgendwann aber das Interesse, und unser Ansatz wurde gestoppt, auf eine Begründung warte ich noch heute.
Aluminiumverbindungen werden aber mit degenerativen Erkrankungen des Gehirns in Verbindung gebracht. Hier muss die Frage erlaubt sein, ob es sinnvoll ist, bspw. in das Wattenmeer Metallverbindungen einzubringen, die als ökotoxisch gelten.
Wir müssen im Labor solche Verbindungen sicher entsorgen. Ob es sinnvoll ist, solche Verbindungen in das Ökosystem einzubringen, müsste dringend erforscht werden. Bis zur Klärung sollten keine weiteren offshore-Windkraftanlagen mehr aufgestellt werden.
7) Holger Douglas: Bedeutet das, dass wir mit den Windkraftanlagen in der Nordsee die Fische und dann letztendlich auch uns mit Aluminium vergiften?
Frank Endres: Diese Frage kann ich nicht exakt beantworten, eine Anreicherung von Aluminium und/oder Zink in der Nahrungskette ist zumindest nicht ausgeschlossen. Die Europäische Union reguliert mittlerweile alles, dieses Thema scheint sie jedoch noch nicht auf dem Schirm zu haben.
Einige Firmen bewerben ihre Kosmetikprodukte mit „Frei von Aluminium-Verbindungen“, aber Aluminium- und Zink-Salze aus offshore-Windkraftanlagen scheinen nicht als Problem identifiziert zu werden. Offenbar urteilt man hier mit zweierlei Maß.
8) Holger Douglas: Erschreckende Berichte über gesundheitliche Auswirkungen von Windrädern kommen aus Dänemark. Dort haben unfreiwillige Tierversuche die drastischen Auswirkungen von Infraschall demonstriert. Was ist das denn überhaupt für ein Phänomen? Wie entsteht in Infraschall bei Windrädern?
Frank Endres: Eine Windkraftanlage aktueller Bauart entzieht dem Wind nur etwa 40 % seiner Energie. Das bedeutet, dass 60% der Energie anderweitig umgewandelt werden. Bei großen Windkraftanlagen werden an den Rotorspitzen bis zu 400 km/h erreicht, in der Folge entstehen Turbulenzen und deutliche Druckschwankungen, deren Folge wiederum Schallwellen sind. Man kennt das von den Wirbelschleppen großer Flugzeuge.
Dass durch Windkraftanlagen Infraschall mit (nicht hörbaren) Frequenzen unter 20 Hz entsteht, zweifelt niemand mehr an, auch zweifelt niemand mehr an, dass umso mehr Infraschall entsteht, je größer die Windkraftanlage ist. Die Studie aus Dänemark hat mich nicht überrascht, denn Infraschall durch WKA (aber auch durch akustisch schlecht gedämmte Wärmepumpen) ist messbar, und lebende Organismen reagieren auch darauf. Über die Folgen und die individuelle Empfindung wird heftig gestritten, ich vermute – aus eigener Erfahrung – dass Allergiker empfindlicher auf Infraschall reagieren als Nicht-Allergiker, aber das ist nur eine Vermutung, die ich nicht streng wissenschaftlich belegen kann. Die Medizin wäre gefordert, diesbezüglich sofort mit der Grundlagenforschung zu beginnen.
Viele Allergiker sind auch sehr lichtempfindlich, wobei eine exakte wissenschaftliche Begründung dafür meines Wissens noch fehlt, man hat bzgl. Allergien bis heute sowieso nur ein rudimentäres Verständnis für ihr Entstehen, die schulmedizinische Behandlung setzt nicht bei der Ursache an sondern kann beim aktuellen Wissensstand nur die Folgen bekämpfen.
Für mich ist es seitens der Windenergie-Szene eine infame Anmaßung, Beschwerden über Infraschall als die Einbildung von Irren darzustellen. Man könnte dann genauso gut argumentieren, dass man sich um die Belange von Allergikern gar nicht zu kümmern braucht, weil die meisten Menschen eben keine Allergiker sind und man Pollen auch nicht sehen kann, man könnte Allergikern also einen NOCEBO-Effekt vorwerfen.
Aus wissenschaftlicher Sicht ist es UNVERANTWORTLICH, die Beschwerden von Menschen im Zusammenhang mit Windkraftanlagen als NOCEBO-Effekt zu bagatellisieren und ohne jegliche Rücksicht einfach so weiterzumachen wie bisher. Die Politik in Bund und Ländern wäre gefordert, sofort unabhängige Untersuchungen in Auftrag zu geben, und zwar nicht an per se befangene Institutionen.
Zum Schutz der Bevölkerung wäre die einzig logische Entscheidung, bis zu einer abschließenden wissenschaftlichen Klärung den Ausbau der Windenergie mit sofortiger Wirkung auszusetzen bzw. Windkraftanlagen zum Schutz von Leib und Leben nur noch mindestens 10 – 15 km von der nächsten Ortschaft entfernt aufzustellen. Wenn die Bundesregierung an dem Ziel „Energiewende“ festhält, wäre sie gefordert, die Forschungsgelder massiv zu erhöhen, um alternative Konzepte zu entwickeln. In Japan werden bspw. Windkraftanlagen entwickelt, die den Magnus-Effekt nutzen. Inwieweit diese WKA Infraschall produzieren, müsste geprüft werden.
9) Holger Douglas: Kennen Sie weitere wissenschaftliche Untersuchungen über dieses Phänomen?
Frank Endres: Soweit ich informiert bin, gibt es medizinische Fachliteratur, die den Einfluss von Infraschall auf die menschliche Gesundheit behandelt, ich bin aber kein Mediziner und rate daher, hierzu einen neutralen und unbefangenen Umweltmediziner zu befragen. In Deutschland entsteht erst langsam ein Bewusstsein für Infraschall, weil durch den massiven Zubau von Windkraftanlagen die Probleme eben erst nach und nach auftreten.
Dass die Windkraft-Szene jeden Zusammenhang mit gesundheitlichen Folgen abstreitet, ist nachvollziehbar. …
Das ganze Interview finden Sie hier