Wärmer oder kälter? AWI-Studie zur Klimageschichte Sibiriens der letzten 7000 Jahre gibt Rätsel auf

geschrieben von Wolfgang Müller | 8. Februar 2015

Die Ergebnisse der Untersuchungen gab das AWI am 26. Januar 2015 per Pressemitteilung bekannt:

Winter in sibirischen Permafrostregionen werden seit Jahrtausenden wärmer

Wissenschaftlern des Alfred-Wegener-Institutes, HelmholtzZentrum für Polar- und Meeresforschung (AWI) ist es erstmals
gelungen, mit einer geochemischen Methode aus der
Gletscherforschung Klimadaten aus Jahrtausende altem
Permafrost-Grundeis zu entschlüsseln und die WintertemperaturEntwicklung im russischen Lena-Delta zu rekonstruieren. Ihr
Fazit: In den zurückliegenden 7000 Jahren ist die
Wintertemperatur in den sibirischen Permafrostregionen
langfristig gestiegen. Als Grund für diese Erwärmung nennen die
Forscher eine sich ändernde Stellung der Erde zur Sonne,
verstärkt durch den steigenden Ausstoß von Treibhausgasen seit
Beginn der Industrialisierung. Die Studie erscheint als
Titelgeschichte der Februar-Ausgabe des Fachmagazins Nature
Geoscience und heute vorab schon einmal online.

Was bedeuten diese Resultate? Zugegeben handelt es sich um eine für Laien komplexe Thematik. Es geht um schwierige geochemische Methoden, schwer fassbare lange Zeiträume, eine behauptete Verknüpfung mit der anthropogenen Klimaerwärmung sowie Milankovic-Zyklik. All das spielt im fernen Sibirien, das vermutlich kaum einer der Leser genauer kennt. Hängenbleiben wird beim ersten Überfliegen der Pressemitteilung "Klimaerwärmung seit tausenden von Jahren, Industrialisierung, Treibhausgase". Seht her, da ist ein weiterer Beweis für unser frevelhaftes Tun und die unaufhaltbare Klimakatastrophe in Zeitlupe. Aber nicht so schnell. Lassen Sie uns die Komponenten der Studie einzeln diskutieren und auf ihre Gültigkeit und Bedeutung überprüfen.

Langfristige Erwärmung der Winter im Verlauf der letzten 7000 Jahre

Ein übraus interessantes Resultat:
Eine langfristige, natürliche
Erwärmung der Winter im
Untersuchungsgebiet in den letzten
Jahrtausenden. Exakte
Temperaturwerte können die AWIForscher nicht angeben, wie das AWI
in seiner Pressemitteilung
erläutert:

Um wie viel Grad Celsius genau die arktischen Winter wärmer geworden sind, können die Wissenschaftler nicht in absoluten Zahlen sagen: "Das Ergebnis der Sauerstoff-Isotopenanalyse verrät uns zunächst nur, ob und wie sich das Isotopenverhältnis verändert hat. Steigt es, sprechen wir von einer relativen Erwärmung. Wie groß diese allerdings genau ausgefallen ist, können wir

noch nicht ohne Weiteres sagen", erklärt Thomas Opel.

Aber es wäre sicher ganz nett gewesen, wenn eine ungefähre Temperaturabschätzung erwähnt worden wäre. Die heutigen Wintertemperaturen betragen im Lenadelta minus 30 Grad bis minus 40 Grad, wie die Encyclopaedia Brittanica weiß:

The climatic features of the Lena River basin are determined by its location, with its upper course well inside the continent and its lower course in the Arctic. In winter the powerful Siberian anticyclone (high-pressure system) forms and dominates all of eastern Siberia. Because of the anticyclone, the winter is

notable for its clear skies and lack of wind. Temperatures fall as low as -60 to -70 °C, with average air temperature in January ranging from -30 to -40 °C. In July averages range between 10 and 20 °C.

Nun war es laut AWI vor ein paar tausend Jahren also noch etwas kälter, sagen wir einfach mal minus 45 Grad, nur um einen Wert zu haben. Es geht also in der ganzen Geschichte um eine Winter-"Erwärmung" die sich von "sehr, sehr super saukalt" hin zu "immer noch sehr super saukalt" entwickelt hat. Bei Nennung dieser Temperaturen hätte vielleicht dem einen oder anderen Leser die Idee kommen können, dass die Winter-Erwärmung der Gegend zweitrangig ist und möglicherweise sogar ganz gut getan hätte.

Nun könnte man sagen, ja, im Winter ist die Entwicklung wohl eher weniger interessant. Wie sieht es denn im Sommer aus, wo laut Encyclopaedia Brittanica heute mit bis zu 20°C zu rechnen ist? Müssen wir hier Angst vor einer "arktischen Turboerwärmung" haben? Die AWI-Pressemitteilung erklärt etwas verklausuliert, dass Rekonstruktionen der Sommertemperaturen eine gegenteilige Entwicklung anzeigen: In den letzten Jahrtausenden ist es in Sibirien immer kälter geworden:

Die neuen Daten sind die ersten eindeutig datierten Wintertemperaturdaten aus der sibirischen Permafrostregion und zeigen einen klaren Trend: "In den zurückliegenden 7000 Jahren sind die Winter im Lena-Delta kontinuierlich wärmer

geworden - eine Entwicklung, die wir so bisher aus kaum einem anderen arktischen Klimaarchiv kennen", sagt Hanno Meyer. Denn: "Bisher wurden vor allem fossile Pollen, Kieselalgen oder Baumringe aus der Arktis genutzt, um das Klima der Vergangenheit zu rekonstruieren. Sie aber speichern vor allem Temperaturinformationen aus dem Sommer, wenn die Pflanzen wachsen und blühen. Die Eiskeile stellen eines der wenigen Archive dar, in denen reine Winterdaten gespeichert werden", erklärt der Permafrost-Experte. Mit den neuen Daten schließen die Wissenschaftler zudem eine wichtige Lücke: "Die meisten Klimamodelle zeigen für die zurückliegenden 7000 Jahre in

der Arktis eine langfristige Abkühlung im Sommer sowie eine langfristige Erwärmung im Winter an. Für letztere aber gab es bisher keine Temperaturdaten, eben weil die meisten Klimaarchive hauptsächlich Sommerinformationen speichern. Jetzt können wir zum ersten Mal zeigen, dass Eiskeile ähnliche Winterinformationen enthalten wie sie von den Klimamodellen simuliert werden", so AWI-Modellierer und Ko-Autor Dr. Thomas Laepple.

Noch klarer wird es in der offiziellen Kurzfassung der Arbeit (Auszug):

Relative to the past 2,000 years1, 2, the Arctic region

has warmed significantly over the past few decades. However, the evolution of Arctic temperatures during the rest of the Holocene is less clear. Proxy reconstructions, suggest a long-term cooling trend throughout the mid- to late Holocene3, 4, 5, whereas climate model simulations show only minor changes or even warming6, 7,8.

Bei den genannten Literaturzitate 3 bis 5 handelt es sich um:

3. Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198_1201 (2013).
4. Vinther, B. M. et al.

Holocene thinning of the Greenland ice sheet. Nature 461, 385_388 (2009).
5. Wanner, H. et al. Mid- to Late Holocene climate change: An overview. Quat. Sci. Rev. 27, 1791 1828 (2008).

Gerne hätte an dieser Stelle auch einer Arbeit einer internationalen Forschergruppe um Benoit Lecavalier von der University of Ottawa aus dem März 2013 in den Quaternary Science Reviews erwähnt werden können. Die Forscher fanden, dass sich Grönland in den letzten 8000 Jahren um etwa 2,5°C abgekühlt hat (siehe "Ein Thema das die Medien meiden wie der Teufel das Weihwasser: Vor 5000 Jahren war es in Grönland zwei bis drei Grad wärmer als heute"). Die Sommer wurden in den letzten 7000 Jahren kälter und die Winter wärmer. So kann man den aktuellen

Erkenntnisstand zusammenfassen. Ursache für diesen Langzeittrend sind die Milankovic-Zyklen, die auf Veränderungen der Erdbahnparameter zurückzuführen sind. Dies sind langfristige Zyklen im Bereich von 20.000 bis 100.000 Jahre, die für die aktuelle Klimadiskussion keine große Rolle spielen. Sie sind auch die Ursache für das sogenannte mittelholozäne Klimaoptimum, als die globalen Temperaturen vor 7000 Jahren um zwei Grad höher lagen als heute. Während die Hauptstory, nämlich die Erwärmung der sibirischen Winter in den letzten Jahrtausenden, durchaus plausibel erscheint, muss man sich doch wundern, weshalb die zeitgleiche Sommer-Abkühlung nicht besser in der AWI-Pressemitteilung herausgearbeitet wurde. Letztendlich geht es neben den Jahreszeiten doch auch darum, wie sich der

Jahresmittelwert entwickelt hat. Dazu kein Kommentar vom AWI. Zu klären wäre auch, weshalb die AWI-Presseabteilung nicht schon einige Monate zuvor aktiv geworden ist, als ein ebenfalls von Hanno Meyer angeführtes Forscherteam im September 2014 im Fachblatt Global and Planetary Change eine Studie zu Kamschatka publizierte. Die Forscher rekonstruierten die Temperaturen in der Region für die vergangenen 5000 Jahren und fanden interessanterweise einen langfristigen Abkühlungstrend. Über lange Zeiten war Kamschatka während der letzten Jahrtausende offenbar wärmer als heute, eine überraschende Erkenntnis (eine genaue Besprechung der Arbeit gibt es auf The Hockey Schtick). Das wäre eine schöne Schlagzeile geworden:

Kamschatka hat sich in den letzten 5000 Jahren abgekühlt.

Aber offenbar war dem AWI diese Schlagzeile zu heiß. Beim weiteren Stöbern wird man das böse Gefühl nicht los,

dass man in der **AWI-Pressestelle** bewusst Studien ausspart, die nicht so recht in die **Klimakatastropheng** eschichte zu passen scheinen. Bereits im Mai 2013 waren erste Ergebnisse zum

Kamschatka-Projekt in den Quaternary Science Reviews publiziert worden, zu denen die Öffentlichkeitsabt eilung des AWI keinen Mucks machte (siehe unseren Blogbeitrag

"Uberraschende Forschungsergebnis se des AWI aus dem subarktischen Kamtschatka: In den letzten 4500 Jahren war es bis zu 4 Grad wärmer als heute"). Die unheimliche Serie setzte sich im September 2013

fort, als im Fachmagazin Palaeo geography, Palaeoclimatology, Palaeoecology eine AWI-Studie eines internationalen Forscherteams um Juliane Klemm erschien. Auch diese

Forschergruppe hatte Unerhörtes herausgefunden, etwas was man auf keinen Fall mit der Presse teilen wollte (siehe unseren Blogbeitrag: "Neue AWI-Studie: Heutige Sommertemperaturen

in der sibirischen Arktis unterscheiden sich kaum von denen der letzten Jahrtausende").

Was hat

nun die Klimakata strophe mit all

dem zu tun?

Zurück zum aktuellen

Paper über das Lena-Delta. Die Erwärmung

der Wintertem peraturen in den letzten 7000

Jahre mag interessa nt sein, ist aber lediglich die

Hinleitun gzur eigentlic hen "Pointe" der

Studie, nämlich, dass der menscheng emachte Klimawand

el der letzten 150 Jahre die Wintertem peraturen

lm Studienge biet nach oben gejagt hätte. In

der AWI-Pressemit teilung l iest sich das so:

Deutlic he Hinweis e fanden die

Wissens chaftle r bei der Suche nach

den Ursache n der Erwärmu ng. Hanno

Meyer: "Wir sehen ĪN unserer Kurve

eine klare Zweitei Lung. Bis zum Beginn

der Industr ialisie rung um das Jahr

1850 können wir die Entwick Lung auf

eine sich ändernd **e** Positio n der

Erde ZUT Sonne zurückf ühren. Das

heißt, damals haben die Dauer und

Intensi tät der Sonnene instrah Lung von

Winter ZU Winter zugenom men und auf

diese Weise ZUM Tempera turanst ieg

geführt Mit dem Beginn der Industr

ialisie rung und dem zunehme nden Ausstoß

von Treibha usgasen WIe Kohlend ioxid

aber kam dann noch der vom Mensche

n verursa chte Treibha useffek t

hinzu. Unsere Datenku rve zeigt ab

diesem Zeitpun kt einen deutlic hen

Anstieg der sich wesentl ich von der

vorgega ngenen Langfri stigen Erwärmu ng

untersc heidet.

Leider

versäumt es das AWI, der Pressemit teilung die

Temperatu rkurve bzw. die Isotopen-Proxy-Kurve

beizufüge n. Wie muss man sich diesen "deutlich

en Anstieg" im Detail vorstelle **n?** Stattdess

en werden der Presse stimmungs volle Expeditio

nsfotos angeboten Das schönste hiervon wollen

wir auch hier im Blog nicht vorenthal ten

(Abbildun **91)**. Abbildung 1rechts oben:. Die

Wissensch aftler Alexander Dereviagi n, Dr. Thomas

Opel und Dr. Hanno Meyer (v.Z.) machen eine

kurze Mittagspa use. Foto: Volkmar Kochan/rb

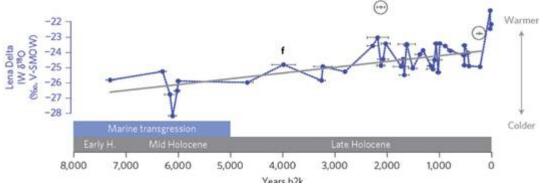

b. Quelle: A WI. Wirklich eln schönes

Foto. Aber trotzdem wäre die Kurve doch um

einiges informati ver gewesen. Wir schauen

daher in die Originalp ublikatio n, wo die gesuchte

Kurve abgedruck ist (Abbildun **Z**)

Abbildung Winter-Temperatu rentwickl ung des

sibirisch en Lena-Deltas während der Letzten

8000 Jahre auf Basis von Sauerstof fisotopen messsunge

n an Eiskeilen

Abbildung aus Meyer et al.

2015. Der langfrist **ige** Winter-Erwärmung

strend ist gut erkennbar Ganz am Ende der Kurve, in

der industrie llen Phase ab 1850, springen

die letzten drei Datenpunk te steil nach

oben. Offensich tlich handelt es sich um einen

Nachfahre n der berühmten Hockeysti ck-Kurve. Nie waren

die Sauerstof f-Isotopenw erte höher als

in den letzten anderthal b Jahrhunde rten.

Es drängen sich sogleich einige wichtige

Fragen auf: -Spiegelt die Isotopenk urve

tatsächli ch die Temperatu ren wieder? Isotopenv

erschiebu ngen können vielerlei Gründe haben und

mussen nicht unbedingt Temperatu ren abbilden.

In vielen Fällen sind Nied erschlags änderunge

Hauptkont rollfakto r für Veränderu ngen der Sauerstof

fisotopen

-Gibt es andere Winter-Temperatu

rrekonstr uktionen aus der Region, die den behauptet

en Verlauf mit anderen Methodike n

betätigen könnten? - Wie sehen die real gemessene

n Winter-Temperatu ren sowie Jahresmit telwerte des Lena-

Delta-Gebiets für die letzten 150 Jahre aus?

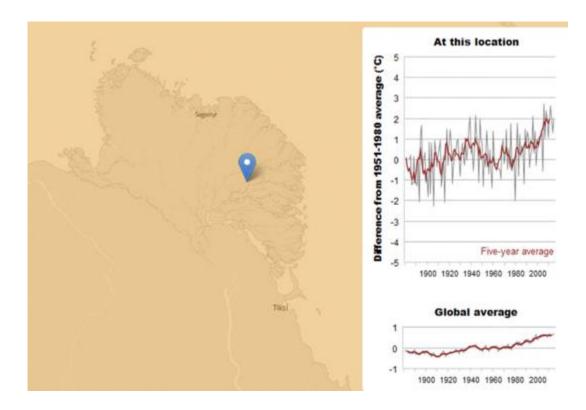
Schauen wir uns hierzu die GISS-Temperatu rkarte

des New Scientist an, ın welcher der Temperatu

rverlauf in der Lenadelta -Region für die vergangen

en 130 Jahre angegeben ist (Abbildun **93**.

Fazit: Ja es ist warmer geworden, so wie in fast


allen Teilen der Erde nach Beendigun g der

Kleinen Eiszeit. Dabei fiel die Wiedererw ärmung in

den arktische N Gebieten stärker aus als

ZUM Beispiel in den Tropen. Soweit ist das

Resultat also nachvollz iehbar.

Abbildung 3: GISS-Temperatu

rverlauf der Lenadelta -Region für die vergangen

en 130 Jahre. Quelle: N ew Scientist

Nun wissen wir aber leider auch, dass die

GISS-Datenbank lange vom bekennend en Klimaakti

visten James Hansen geführt wurde und die

Temperatu rrohdaten arg nachb earbeitet wurden. Daher

schauen wir lieber auf einen Roh datensatz

des Ortes Tiksi, der seit 1936 Messdaten liefert.

Die Daten stammen a us dem BEST-Projekt der

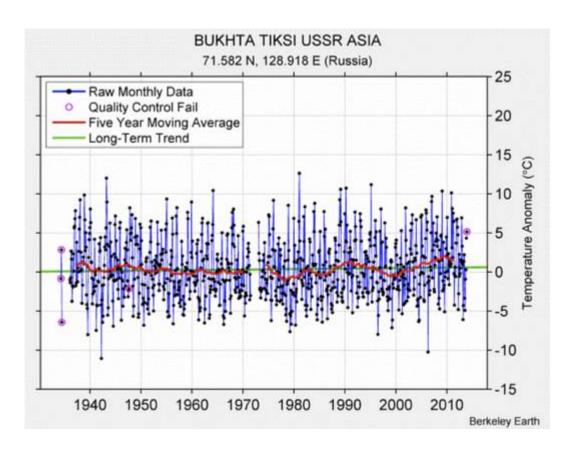
Universit v of Californi a in Berkeley, sollten

also relativ vertrauen swürdig sein (Abbildun

g 4). Der Ort Tiksi ist auf der Landkarte ln

Abbildung 3 eingezeic hnet. Die Uberrasch

ung ist groß: Der im GISS-Datensatz dargestel lte


starke Erwärmung strend ist in den Originald

aten kaum ZU erkennen. Anstatt einer GISS-

Erwärmung von 2 Grad pro Jahrhunde rt verzeichn

et BEST lediglich eine Erwärmung srate von etwa 0,5

Grad nach Qualitäts überprüfu ng.

Abbildung

4:

Temperatu

rdaten der Wettersta tion Tiksi im Lena-

Delta Lau t BEST-Projekt. Die wirkliche Frage

muss jedoch sein, auf welchem Niveau sich die

Temperatu ren während der Mittelalt erlichen

Wärmeperi ode (MWP) im Lena-Delta bewegten. In einer

zusammenf assenden Darstellu ng zur MWP für den

asiatisch en Teil Russlands auf co2scienc e.org

stoßen wir bei unseren Recherche n auf eine

Veröffent lichung von Matul et al., die 2007 lm

Fachblatt Oceanolo gy erschi en. CO2 S cience fa sst die

Ergebniss e der Arbeit wie folgt zusammen:

What Was done The authors studied

the distrib utions of differe nt

species of siliceo US microfl ora

(diatom 5), calcare OUS microfa una

(foramī nifers) and sporepollen assembl

ages found Īn sedimen t cores retriev

ed from 21 sites on the inner shelf

of the souther n and eastern Laptev Sea,

startin g from the Len a River delta a nd

moving seaward between about 130 and 134°E

and stretch ing from approxi mately

71 to 78°N, which cores were acquire

d by a Russian -French Expedit ĪON during

the cruise of R/V Yakov Smirnit sky in

1991. What Was Learned In the words

of the five Russian researc hers, this

endeavo reveale d"(1) the war ming at

the beginni ng of the Common Era

(termin al epoch of the Rom an Empi

re) during ~1600-1 900 years BP; (2)

the multipl е, althoug h Lowamplitu

de, coo Lingepi sodes at the beginni ng of

the Middle Ages, 1 100-160 0 years BP; (3)

the Med ieval Warm Period, ~600-11 00

years BP; (4) the Lit tle Ice Age, ~100-60

0 years BP, with the cooling maximum

~150-45 0 years BP; and (5) the 'in

dustria **l** ′ warming during the last

100 years." What it means "Judgin g from

the increas ed diversi ty and abundan

ce of the benthic foramin ifers, the

appeara nce of moderat ely thermop hilic

diatom species and the presenc e of

forest tundra (instea d of tundra) pollen,

Matul et al. conclud e that "the Medieva

Z warming exceede d the recent 'indust

rial' one," and that "t he warming

in the Laptev Sea during the period

of ~5100-6 200 years BP corresp

onding to the Holocen e climati C

optimum could be even more signifi cant as

compare d with the Medieva 1 Warm Period.

Once again, therefo re, we have another

example of a paleocl imate study that

challen ges the content ion of Hansen et al.

(2006)that "probab ly the planet as a

whole" is "approx imately as warm now as

at the Holocen **e** maximum

Die Autoren um Matul rekonstru ierten also

mithilfe von Mikroorga nismen die holozäne

Klimagesc hichte des Lena-Deltas und der vorgelage

rten Laptevsee Matul und Kollege fanden

dabei für die vergangen en 2000 Jahre die bekannte

Millenniu mszyklik bestehend aus Römischer Wärmeperi

ode, Kälteperi ode der Völkerwan derungsze it,

Mittelalt erlicher Wärmeperi ode, Kleiner Eiszeit

und Moderner Wärmeperi ode. Interessa nterweise

war die Mittelalt erliche Wärmeperi ode offenbar

deutlich warmer als heute. Zudem war das

mittelhol ozane Klimaopti mum 1m Untersuch ungsgebie

t vor 6000 Jahren sogar noch warmer.

Nun wundert es doch sehr, dass die AWI-

Gruppe diese wichtige Arbeit in ihrer neuen

Lena-Delta Arbeit mit keiner Silbe

erwähnt. Selbst Wenn Matul et al. wohl überwiege

nd Sommertem peraturen rekonstru iert haben,

hätte die Arbeit doch auf jeden Fall Berücksic

htigung finden mussen. Sind die Sommertem peraturen

nicht vielleich t viel wichtiger als die sowieso

unterkühl ten Winterwer te? Bill Illis

konnte in einer Diskussio n zum AWI-Paper auf

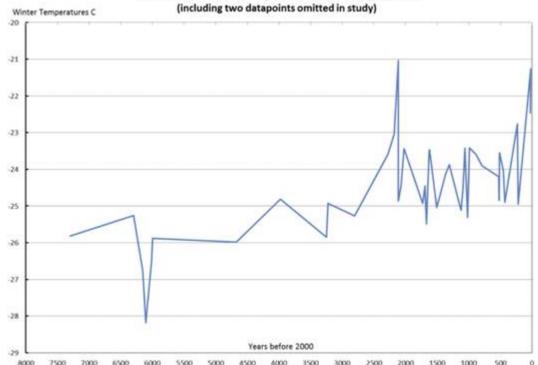
WUWT zeig en, dass die AWI-Autoren zwel möglicher

weise wichtige Datenpunk te aus der Betrachtu

ng ausschlos sen (Abbildun **g 5**). Einer

davon zeigte während der Römischen Wärmeperi

ode eine bedeutend e Winter-Erwärmung an, die sich etwa


auf heutigem Temperatu rniveau bewegte. Der Wert

wurde unter Hinweis auf "oberfläc hennahe

Kontamini erung" aus dem Rennen geschmiss en und in

der Auswertun g ignoriert

Lena Delta dO18 Isotope to Winter Temperature

Abbildung 5: Plot

der

Temperatu r-Proxy-Wert aus Meyer et al. 2015, mit zwei

zusätzlic hen Werten, die die Autoren wegen

"mögliche Kontamini erung" verworfen hatten.

Plot: Bil l l Illis/WUW T

Unte

Strate

unte

Stri

Ch?

mato SChe

Stuc

et

uner

Wart

ete

ung, die

Bele

CICON

ende

astr

Obhe MISS

braU

Cht

ande

rsla

uten

Befu

aus

chen

Oh

SOWIL

ande

Arbe

Werd

en

esch

en .

Behavior

ey/sc

Char

aKte

abbase OXIM

en

Temp

erat

twic

G Tass

Alar

CKEN SChr

Verw

ende

Meth

ZUVE

Mesh

a L b

WU C

en

Se

Date

Lgno

til til

erte

mper atur

entw

ung wirk

Version of the second s

ZUM

Somm

erve

Mesh

KONM

en

ande

Mess

en

erat

ure

KONS

truk tion

en

den

rasa

nten

eysc hläg

Anst

oduz

Imme rhilm

Cher

erge offe

WILE SIE

Pres

Seml

em

hSt

en

SCh

t

len

SCh

i fe

SE

ben

Anz

hen

Lan

St. St.

ige de la constant de

ter

arm

Ing der

auc

and

ere

n

Per

Ma

MOS

tre

nen

der

den

Mas

hab

en

Dat

en

aus

em

Geb

OME

ter

des

tas

UIN S

ere

ebn

ISSS

tze

Sen

era

ht,

ZUM

e

Kan

SCh

en

aus

ht.

Verification of the second of

MUT

en,
das

ah

abe

nen

56

Ann

ahm

no C

ht.

SLEh

auch

den

rag ,,Ark

Oerw

armula

C em

Stan

KOhZ

Wack elig

en

Belh

en

St

ersc Ersc

en

SONM