Neue Fakten zu Fukushima-Zweite Begutachtung durch IAEA
Einordnung des Berichts
In der Folge des Reaktorunglücks am 11. März 2011 hat der Betreiber TEPCO einen Aktionsplan zur Beseitigung der Schäden vorgelegt. Dieser Plan wurde von den einschlägigen japanischen Verwaltungen geprüft. Diese "Roadmap" enthält detaillierte Beschreibungen und Zeitpläne der durchzuführenden Arbeiten. Jeweils im July 2012 und Juni 2013 wurde eine grundlegend neu überarbeitete Fassung erstellt. Die japanische Regierung, vertreten durch das METI (Ministry of Economy, Trade and Industry), hat die IAEA um eine Begutachtung dieser "Roadmap" gebeten.
Inzwischen trägt die japanische Offenheit Früchte. Das Spielfeld für Betroffenheitsunternehmen vom Schlage Greenpeace, ist bemerkenswert eng geworden. Es gelingt den einschlägigen "Atomexperten" kaum noch, ihre tumbe Propaganda in den Medien unter zu bringen. Sie können nur noch ihre tiefgläubige Klientel bedienen. Wenn man sich an die Geheimniskrämerei der Sowjets nach Tschernobyl erinnert, ein bemerkenswerter Fortschritt. Mangels frei zugänglicher und überprüfbarer Informationen selbst für Fachkreise, war jeglicher Spekulation und Verschwörungstheorie Tür und Tor geöffnet.
Japan hat viele grundsätzliche und vermeidbare Fehler im Umgang mit der Kernenergie gemacht. Sie haben aber ihre Konsequenzen gezogen und ohne jede Rücksicht auf Kosten und Organisationsstrukturen radikale Veränderungen durchgeführt. Veränderungen, die der Verbesserung und weiteren Entwicklung dienen und nicht dem politischen Tagesgeschäft geschuldet sind.
Entfernung der Brennelemente
Die vorhandenen Lagerbehälter auf dem Gelände wurden überprüft, mit neuen Dichtungen versehen und auf einen sicheren Platz umgesetzt. An einer langfristigen Lösung wird gearbeitet.
Der Block 4 wurde vollständig neu eingehaust und inzwischen von allem Schutt geräumt. Es ist jetzt wieder eine, einem Kernkraftwerk entsprechende Arbeitsumgebung geschaffen worden. In den letzten fünf Monaten sind bereits 659 Brennelemente aus dem Lagerbecken entfernt worden, in 14 trockenen Lagerbehältern (Anmerkung: ähnlich "Castoren") verpackt und auf dem Zwischenlagerplatz transportiert worden. Alle größeren Trümmer sind aus dem Lagerbecken geräumt, kleinteilige Trümmer zu über 70 % entfernt und fast 20% der Lagergestelle bereits ausgesaugt worden.
Es ist geplant, alle Brennelemente aus den Lagerbecken bis 2017 zu entfernen und in trockene Lagerbehälter zu verpacken. Es wird ein Verfahren ausgearbeitet, alle Brennelemente auch innen so zu reinigen und zu waschen, daß sie "normalen" Ladungen aus Kernkraftwerken entsprechen, um sie den normalen Wiederaufbereitungsanlagen problemlos zuführen zu können. Alle Brennelemente werden in fünf Kategorien eingeteilt: In Ordnung und vollständig bestrahlt, in Ordnung und teilweise bestrahlt, in Ordnung und nicht bestrahlt, beschädigt (im Sinne von, der Austritt radioaktiver Stoffe ist möglich), leicht beschädigt (lediglich mechanisch; vom Originalzustand abweichend).
Weit aus schwieriger und langwieriger, gestaltet sich die Entfernung des "radioaktiven Bruches". Gemeint ist damit geschmolzener Brennstoff, der teilweise sogar Legierungen mit anderen Materialien des Reaktorkerns eingegangen sein wird. Hier ist nur ein schrittweises Vorgehen möglich. Man muß erst allen Schutt — verursacht durch die Wasserstoffexplosionen — wegräumen, um an die Druckgefäße zu gelangen. Dies muß wegen der erhöhten Strahlung fernbedient und durch Roboter geschehen. Ein Entwicklungsprozess, der ständig neu durchdacht und angepaßt werden muß. Die Vorarbeiten werden mehre Jahre in Anspruch nehmen.
Umgang mit dem verseuchten Wasser
Die Lagerung von radioaktivem Wasser in Tankanlagen auf dem Gelände, war in den letzten Monaten ein ständiges Ärgernis. Auftretende Leckagen fanden ein breites Echo in der weltweiten Öffentlichkeit. Es wurden drei Prinzipien zur Vorgehensweise definiert:
1. Beseitigung der Quellen. Dies ist der schwierigste Teil, da es kurzfristig eine Abdichtung der zerstörten Sicherheitsbehälter erfordert und langfristig eine Beräumung des "radioaktiven Schutts".
2. Trennung von Grundwasserströmen auf dem Gelände von kontaminiertem Wasser im Bereich der zerstörten Anlage. Maßnahmen sind eingeleitet: Umleiten der Grundwasserströme oberhalb des Standortes, bevor sie die Ruine erreichen können. Errichtung von unterirdischen Sperren vor den Blöcken und gegenüber der Hafenseite.
3. Sicherung der gelagerten Wassermassen (Verhinderung von Undichtigkeiten, Auffanganlagen für Leckagen etc.). Beschleunigter Bau von Reinigungsanlagen. Momentan liegt der Schwerpunkt auf einer sehr erfolgreichen Entfernung des Cäsiums (Anmerkung: Cäsium ist ein γ-Strahler und maßgeblich an der Strahlenbelastung im Tanklager verantwortlich; α- und β-Strahler sind in diesem Sinne unerheblich — niemand muß das Wasser trinken.). Ferner wird inzwischen das ursprünglich zur Kühlung verwendete Meerwasser entsalzt und wieder verwendet. Inzwischen wurden über 800 000 m3 sehr erfolgreich behandelt.
Inzwischen haben sich mehr als 500 000 m3 kontaminiertes Wasser auf dem Gelände angesammelt. Davon ungefähr 400 000 m3 in 900 oberirdischen Tanks! Der Rest befindet sich noch in den Kellern, Kabelkanälen usw. Man geht davon aus, daß man das Tanklager noch einmal verdoppeln muß. Dies hängt jedoch letztendlich von den Gegenmaßnahmen und dem Tempo bei der Wasseraufbereitung ab. Es wird z. B. auch erprobt, das Wasser nicht mehr ständig aus den Kellern und Kanälen abzupumpen, sondern mobile Reinigungsanlagen einzusetzen. Rund 300 000 m3 in den Tanks besteht inzwischen aus dem Abwasserstrom der Meerwasserentsalzung (Salzlake) und Cäsium-Entfernung. Es "strahlt" daher nur noch relativ gering, besitzt aber einen erhöhten Anteil an Sr-90 und Y-90. Andere Radionuklide sind nur in geringem Umfang vorhanden. TEPCO setzt nun auf das Advanced Multi-Nuclide Removal System (ALPS) zur Beseitigung der radioaktiven Abwässer. Es ist bereits eine Versuchsanlage mit drei parallelen Strängen zu je 250 m3 / Tag in Betrieb. Mit ihr wurden bereits 30 000 m3 erfolgreich gereinigt. Es gelingt praktisch alle Radionuklide — bis auf Tritium — unter die Nachweisgrenze zu entfernen. (Anmerkung: Tritium bildet "titriertes Wasser", welches chemisch praktisch nicht von normalem H2O unterscheidbar ist. Es ist aber relativ harmlos, da es sich nicht im Körper anreichert und wie jegliches andere Wasser auch, eine sehr geringe biologische Halbwertszeit besitzt). Inzwischen laufen in Japan Diskussionen, ob man nicht wenigstens dieses Wasser, in "Trinkwasserqualität" in das Meer abgeben könnte. In der japanische Kultur, ist diese Frage keinesfalls mit einem einfachen "Ja" zu beantworten.
Unmittelbar nach dem Unglück, in einer durch den Tsunami völlig zerstörten Infrastruktur, war es richtig, möglichst schnell ein Tanklager zur Rückhaltung von radioaktivem Wasser aufzustellen. Es wurde deshalb auf zusammengeschraubte Tanks zurückgegriffen. Solche Tanks, mit ihren zahlreichen Dichtungen, sind nicht für einen dauerhaften Betrieb geeignet. Es wird deshalb ein umfangreiches Programm gestartet, welches sich mit einer dringend notwendigen Ertüchtigung beschäftigt. Neue Tanks, sollen nur noch in geschweißter Ausführung erstellt werden. Wenn das Tanklager noch sehr lange nötig wird, will man sogar die vorhandenen Behälter ersetzen.
Feste Abfälle
Bei der Reinigung der gewaltigen Wassermengen darf nicht vergessen werden, daß man damit nicht die Radioaktivität beseitigt, sondern lediglich umlagert. Nach der Reinigung bleiben Zeolite, an die die Radionuklide gebunden sind und Schlämme mit Radionukliden übrig. Diese müssen vor der endgültigen Lagerung in eine feste Form überführt werden, damit sie nicht in die Umwelt freigesetzt werden. Es werden einige tausend Kubikmeter solcher niedrig und mittelaktiven Materialien übrig bleiben.
Der (kontaminierte) Schutt infolge des Tsunami ist für sich genommen, ein gewaltiges Problem. Bisher wurden von dem Gelände 65 000 m3 Schutt und allein 51 000 m3 Abfallholz beiseite geräumt und in zehn Zwischenlagern gesammelt. Da die gefällten Bäume "leicht verstrahlt" sind, dürfen sie nicht einfach verbrannt werden. Sie werden deshalb in Fässer verpackt, die für eine Lagerung von 25 Jahren vorgesehen sind. Für 23 000 dieser "Altholzfässer" wird gerade ein eigenes Lagergebäude errichtet. Kann sich noch jemand an die Bilder von Tschernobyl erinnern, wo ganze LKW und Busse einfach in ausgehobene Gräben versenkt wurden?
Bei einem normalen Abriss eines Reaktors, geht man von etwa 10 000 m3 "Atommüll" aus, der endgelagert werden muß. Der Rest kann nach Reinigung und Freimessung in den normalen Wertstoffkreislauf gegeben werden. In Fukushima rechnet man mit über 800 000 m3. Es ist deshalb ein umfangreiches Programm zur völligen Neuentwicklung eines Recycling auf der Unglücksstelle gestartet worden. Man möchte möglichst viel des unbelasteten Abfalls (nach einer Reinigung) auf der Baustelle wieder verwenden. Beispielsweise kann man das Volumen von Metallschrott durch Einschmelzen um 70 bis 80 % verringern. Ein bereits bei der Beseitigung von alten Dampferzeugern angewendetes Verfahren. Es wird nun untersucht, wie man das auf der Baustelle (kostengünstig) durchführen kann und dieses "leicht radioaktive" Material gleich zum Bau der "Atommülldeponien" wieder verwenden kann.
Nach heutiger Planung, geht man erst in 20 bis 25 Jahren von einem Abtransport radioaktiver Abfälle von der Unglücksstelle (in ein Endlager) aus. Bis dahin muß man deshalb für einen ausreichenden Strahlenschutz auf der Baustelle sorgen. Es müssen deshalb jede Menge provisorischer Abschirmungen gebaut werden.
Maßnahmen gegen das Eindringen von Grundwasser
Im Nachhinein kann man sagen, daß der Bau der Anlage im Grundwasser, ein weiterer schwerwiegender Konstruktionsfehler war. Das Kraftwerk mit seiner kompakten Bauweise aus vier Blöcken, besitzt zahlreiche Keller und unterirdische Verbindungskanäle. Diese lagen alle unterhalb des natürlichen Grundwasserspiegels. Um ein aufschwimmen zu verhindern, war deshalb eine permanente Grundwasserabsenkung erforderlich. Die erforderlichen Leitungen und Pumpen wurden durch den Tsunami zerstört. Infolgedessen kam es zu einem schnellen Wiederanstieg des Grundwassers, was zu zahlreichen Bauschäden führte. Heute dringen immer noch ungefähr 400 m3 täglich ein.
Es wurde bereits ein ganzes Bündel Maßnahmen ergriffen, um dieses Problem in den Griff zu bekommen. Durch Grundwasserabsenkung, -umleitung und Abdichtung bestimmter Bodenschichten, konnte bereits das Weiterfließen ins Meer aufgehalten werden. Das Eindringen in die Gebäude kann aber erst verhindert werden, wenn um das gesamte Kraftwerk eine Barriere aus Eis erzeugt worden ist. Man arbeitet bereits daran. Diese Methode ist z. B. im Tunnelbau Stand der Technik.
Strahlenbelastung in unmittelbarer Umgebung
Die Grundstücksgrenze, ist die (juristische) Grenze zwischen zwei Welten: Innerhalb des Zaunes gilt der Arbeitsschutz, außerhalb die allgemeinen Regeln für die Bevölkerung. Die japanische Regierung hat die zulässige zusätzliche Belastung für die Bevölkerung auf 1 mSv pro Jahr festgelegt. Dieser — absurd niedrige Wert — hat auch unmittelbar am Bauzaun zu gelten. Die aktuelle Belastung durch Gase ist praktisch nicht mehr vorhanden, weil praktisch keine Gase mehr austreten. Der "cloudshine" (Anmerkung: Strahlung, die Richtung Himmel abgegeben wird, wird teilweise durch die Luft zurückgestreut) beträgt ungefähr 1,8 x 10^{-8} mSv/a, die direkte Strahlung ungefähr 2,8 x 10^{-2} mSv/a und die Belastung durch Atmung und Nahrungsaufnahme ungefähr 1,8 x 10^{-4} mSv/a. Wohlgemerkt, 0,0282 mSv für jemanden, der das ganze Jahr unmittelbar am Bauzaun steht! In etwa, die Strahlenbelastung eines einzigen Transatlantikfluges nach USA.
Allerdings ist seit etwa April an manchen Stellen die jährliche Strahlenbelastung "dramatisch" auf 0,4 bis 7.8 mSv angestiegen. Dies ist in der Nähe der Tanks der Fall, in denen die Lake aus der Aufbereitung der "ersten Kühlwässer" eingelagert wurde. Sie wurde ursprünglich in unterirdischen Behältern gelagert, aber aus Angst vor unentdeckten Undichtigkeiten, in besser kontrollierbare oberirdische Tanks, umgepumpt.
Die IAEA-Kommission empfiehlt daher, für die "Strahlenbelastung der Öffentlichkeit" eine Person mit realistischen Lebens- und Aufenthaltsbedingungen zu definieren.
Robotereinsatz
Deutlicher, kann man den Unterschied zweier Gesellschaftssysteme nicht aufzeigen, wenn man die Aufräumarbeiten in Tschernobyl und Fukushima vergleicht. Welchen Wert ein Mensch im real existierenden Sozialismus hatte, kann man ermessen, wenn man die Bilder der Soldaten betrachtet, die mit bloßen Händen den Kernbrennstoff zurück in den Schlund des Reaktors warfen. In Fukushima schickt man auch nach drei Jahren nicht einmal einen Arbeiter in die Nähe der verunglückten Sicherheitsbehälter! Alle Erkundungen oder Reinigung- und Aufräumarbeiten werden maschinell aus sicherer Entfernung durchgeführt. Wenn man in des Wortes Bedeutung nicht weiter kommt, wird erst ein Roboter oder eine Vorrichtung entwickelt und gebaut. Wenn Geräte aus dem Ausland besser geeignet sind als eigene Entwicklungen, werden sie gekauft. Man denkt asiatisch langfristig und gibt sich selbst eine Zeitvorgabe von 30 bis 40 Jahren. Es wird schön zu beobachten sein, welchen Quantensprung die Automatisierung in der japanischen Industrie allgemein, in einigen Jahrzehnten erreicht haben wird. Hier in Fukushima, ist die Keimzelle für eine Revolution in der Industrie und Bautechnik. Japan scheint wieder einmal die restliche Welt verblüffen zu wollen — diesmal allerdings auf einem friedlichen Gebiet.
Kontrolle des Meeres
Zur Überwachung des Meeres wurden 180 Kontrollstellen für Wasser und Sedimente eingerichtet. Die laufenden Messungen haben ergeben, daß die Einleitungen seit dem Unglück um mehr als fünf Größenordnungen kleiner geworden sind. Die Messungen werden von TEPCO und sechs verschiedenen japanischen Behörden unabhängig und redundant vorgenommen. Hinzu kommen noch zahlreiche Universitäten und Forschungseinrichtungen.
Die Ergebnisse sind allen interessierten Organisationen international zugänglich. Fast alle Daten werden kontinuierlich auf verschiedenen Web-Sites veröffentlicht. Leitgröße ist Cs-137 wegen seiner langen Halbwertszeit von 30 Jahren. Seine Konzentration beträgt in der Nähe des Kraftwerks zwischen 1 und 2 Bq/Liter. Wegen der starken Verdünnung durch die Meeresströmungen sinkt es im Küstenverlauf unter 100 mBq/Liter. An entfernteren Küsten sinkt sie unter 1 bis 3 mBq/Liter.
Japan hat 2012 einen zulässigen Grenzwert von 100 Bq/kg für Fisch als Summe aller Cäsium Isotope festgelegt. In Fukushima wurden von 2011 bis 2013, 15144 Proben Meeresfrüchte untersucht, von denen 2016 diesen Grenzwert überschritten haben. Ein Zeichen der positiven Entwicklung ist dabei, daß die Quote von 57,7 % (Mittelwert der Periode April bis Juni 2011) auf 1,7 % im Dezember 2013 gesunken ist. In den anderen Küstenregionen wurden weitere 21 606 Proben im gleichen Zeitraum untersucht. Von denen 174 den Grenzwert überschritten haben. Dort sank die Quote von 4,7 % auf 0,1 %. Die schnelle und örtliche Abnahme zeigt, wie unbegründet die Tatarenmeldungen über eine weltweite Gefährdung gewesen sind. Nur mal so zur Orientierung: Eine einzelne Banane soll etwa 20 Bq in der Form von "natürlichem" Kalium haben.
Hier wird aber auch deutlich, daß es dem Laien wenig hilft, wenn er mit einem Zahlenfriedhof allein gelassen wird. Die IAEA empfiehlt daher den japanischen Behörden, noch enger mit interessierten Gruppen (Fischer, Händler, Verbraucherschutz, usw.) zusammenzuarbeiten und allgemein verständliche Interpretationen zu entwickeln. Ferner wird empfohlen automatische Meßstationen mit simultaner Übertragung ins Internet einzurichten, um das Vertrauen bei der Bevölkerung zu erhöhen. Außerdem ist die Qualität der Messungen über Ringversuche abzusichern. Inzwischen sind allein mehr als zehn verschiedene japanische Institutionen an den Messungen beteiligt. Meßfehler einzelner Organisationen, könnten von der Öffentlichkeit falsch interpretiert werden.