Wie wissenschaftlich ist die Klimawissenschaft? Der allerwichtigste Grund, die globale Erwärmung zu bezweifeln, kann in einfachem Deutsch erklärt werden.

Signifikanz

Betrachten Sie den Verlauf der globalen Temperatur in Abbildung 1, die die Daten der NASA verwendet. Zunächst könnte es offensichtlich scheinen, dass der Graph eine Zunahme der Temperatur anzeigt. Tatsächlich sieht die Geschichte etwas anders aus, wie wir jetzt sehen werden.
Abbildung 1 rechts: Zeitreihe der globalen Mitteltemperatur.
Stellen Sie sich vor, Sie werfen zehn mal eine Münze. Falls jedes Mal der Kopf oben liegt, würden wir einen signifikanten Beweis dafür haben, dass die Münze keine richtige Münze ist. Stellen Sie sich nun vor, die Münze wird nur dreimal geworfen. Falls jetzt wieder dreimal der Kopf oben liegt, würden wir keinen signifikanten Beweis für die Fehlerhaftigkeit der Münze haben: Dreimal Kopf kann jederzeit zufällig vorkommen.

Abbildung 2: Münzwürfe: K, Z, K (links); Z, K, Z (Mitte); K, Z, Z (rechts)*
*head and tail [H, T] ist das typische entweder-oder im englischen Sprachraum, wenn es um das Losen mit Münzen geht. Hier wird dafür die gängige deutsche Bezeichnung Kopf und Zahl (K, Z) verwendet. A. d. Übers.]
In Abbildung 2 besteht jeder Graph aus drei Teilen: jedes Segment steht für je drei Münzwürfe. Falls die Münze Kopf zeigt, zeigt der Graph aufwärts, zeigt sie Zahl, zeigt er abwärts. In Abbildung 2 zeigt der Graph links Kopf, Zahl, Kopf; der mittlere Zahl, Kopf, Zahl und der rechte Kopf, Zahl, Zahl.


Abbildung 3: Münzwürfe: K, K, K

Betrachten Sie jetzt Abbildung 3. Auf den ersten Blick könnte es so aussehen, als ob der Graph eine Zunahme zeigt. Dieser Graph illustriert jedoch Kopf, Kopf, Kopf. Dreimal Kopf ist kein signifikanter Beweis für etwas anderes als Zufall. Ein Statistiker würde sagen, dass, obwohl Abbildung 3 eine Zunahme zeigt, diese Zunahme „nicht signifikant“ ist.
Nehmen Sie jetzt an, dass wir an Stelle der Münzen einen normalen sechsseitigen Würfel werfen. Zeigt sich die 1, wird eine abwärts führende Linie gezeichnet, bei einer 6 eine aufwärts führende Linie. Sollten die 2, 3, 4 oder 5 geworfen werden, wird eine Linie waagerecht gezeichnet. Wir werfen jeden Würfel dreimal. Beispiele zeigt Abbildung 4.

Abbildung 4: gewürfelte Ziffern 3, 6, 3 (links); 1, 5, 2 (Mitte); 4, 6, 1 (rechts)
Als nächstes betrachte man Abbildung 5, die dreimal eine 6 gewürfelt repräsentiert. Dieses Ergebnis würde zufällig nur einmal in 216 Fällen auftreten und stellt so einen signifikanten Beweis dar, dass der Würfel nicht normal rollt. Das heißt, die Zunahme in Abbildung 5 ist signifikant.

Abbildung 5: gewürfelt 6, 6, 6
Die Abbildungen 3 und 5 sehen identisch aus. In Abbildung 3 ist die Zunahme nicht signifikant, und in Abbildung 5 ist sie es. Diese Beispiele verdeutlichen, dass wir nicht durch bloßes Betrachten bestimmen können, ob eine Linie eine signifikante Zunahme zeigt. Vielmehr müssen wir etwas über den Prozess wissen, der zur Erstellung der Linie geführt hat. In der Praxis kann dieser Prozess sehr kompliziert sein, was die Abschätzung schwierig macht.
Betrachten Sie nochmals den Graph in Abbildung 1 oben rechts. Wir können nicht durch bloßes Anschauen des Graphen sagen, ob die globale Temperatur signifikant zunimmt. Mehr noch, der Prozess zur Erzeugung dieses Graphen – das Klimasystem der Erde – ist extrem kompliziert. Folglich wird es schwierig zu beurteilen sein, ob es eine signifikante Zunahme gibt oder nicht.

Zeitreihen

Dies führt uns zum statistischen Konzept einer Zeitreihe. Eine Zeitreihe ist jede Reihe von Messungen in bestimmten regelmäßigen Zeitabständen. Beispiele sind Folgende: Die Preise der Börse in New York bei Handelsschluss an jedem Tag, die tägliche Höchsttemperatur in London, die jährliche Menge der Weizenernte in Kanada. Ein weiteres Beispiel ist die mittlere globale Temperatur eines jeden Jahres.
In der Analyse einer Zeitreihe lautet eine der grundlegenden Fragen, wie man abschätzen kann, ob sich eine gegebene Reihe signifikant aufwärts (oder abwärts) bewegt. Die Mathematik einer Zeitreihenanalyse stellt uns einige Methoden zur Beantwortung dieser Frage zur Verfügung. Als erstes müssen wir zusammentragen, was wir über die Zeitreihe wissen. Zum Beispiel können wir feststellen, dass die Reihe immer dann einen Schritt nach oben macht, wenn eine bestimmte Münze Kopf zeigt, und dass die Reihe drei Schritte nach oben enthält, wie in Abbildung 3. Als nächstes müssen wir einige Berechnungen auf der Basis dessen, was wir festgestellt haben, durchführen. Zum Beispiel, wir berechnen die Wahrscheinlichkeit, dass eine Münze drei mal hintereinander Kopf zeigt, mit ½ × ½ × ½ = ?, d. h. es ergibt sich eine Wahrscheinlichkeit des Eintreffens von 12,5%. Daraus schließen wir, dass die drei Schritte nach oben in der Reihe der Münzwürfe gut und gerne als Zufall betrachtet werden – und folglich, dass die Zunahme in Abbildung 3 nicht signifikant ist.
Ganz ähnlich müssen wir, um festzustellen, ob die globale Temperatur signifikant zunimmt, zunächst festlegen, was wir über die Temperaturreihe wissen. Was wissen wir über die Reihe? Unglücklicherweise nicht genug, um eine brauchbare Zeitreihenanalyse durchzuführen. Also müssen wir über die Reihe einige Hypothesen machen und unsere Analyse dann auf der Basis dieser Hypothesen durchführen. Dies wird von den Zeitreihenanalysten vorgeschlagen. Solange die Hypothesen sinnvoll sind, können wir zuversichtlich sein, dass die Schlussfolgerungen aus unserer Analyse vernünftig sind.

Die IPCC-Hypothese

Die grundlegende Institution, wenn es um die globale Erwärmung geht, ist das IPCC. Der jüngste Bericht des IPCC zur wissenschaftlichen Basis der globalen Erwärmung wurde 2007 veröffentlicht. In Kapitel 3 werden Überlegungen zur globalen Temperaturreihe wie in Abbildung 1 angestellt. Die wesentliche Schlussfolgerung dieses Kapitels lautet, dass die Zunahme der globalen Temperatur extrem signifikant ist.

Um diese Schlussfolgerung zu ziehen, musste das IPCC eine Annahme über die Reihe der globalen Temperatur machen. Diese Annahme ist als „AR1“-Annahme bekannt (aus dem statistischen Konzept der „Autoregression erster Ordnung“). Die Annahme lautet neben Anderem, dass nur der gegenwärtige Wert in einer Zeitreihe eine direkte Auswirkung auf den nächsten Wert hat. Für die globale Temperaturreihe bedeutet dies, dass die Temperatur dieses Jahres Auswirkung auf die Temperatur des nächsten Jahres hat, nicht aber die Temperatur der Jahre zuvor. Zum Beispiel, falls die letzten Jahre extrem kalt waren, würde dies keine Auswirkungen auf die Wahrscheinlichkeit haben, dass es im nächsten Jahr kälter als im Mittel zu erwarten sein wird. Also scheint die vom IPCC gemachte Annahme intuitiv nicht plausibel zu sein.

Es gibt Standardchecks, um (teilweise) zu testen, ob eine Zeitreihe zu einer gegebenen statistischen Annahme passt. Ist dies nicht der Fall, müssen alle Schlussfolgerungen, die auf dieser Annahme basieren, als unbegründet betrachtet werden. Zum Beispiel, wenn die Signifikanz der Zunahme in Abbildung 5 aufgrund der Annahme berechnet worden wäre, dass die Wahrscheinlichkeit der Aufwärtsbewegung eins zu zwei anstatt eins zu sechs betragen würde, würde dies zu einer unrichtigen Schlussfolgerung führen. Im Kapitel des IPCC fehlt jedoch jeder Hinweis, dass solche Checks durchgeführt worden waren.

Mit anderen Worten, die Hypothese des IPCC besteht einfach aus einer Ankündigung. Von der Wissenschaft nimmt man an, dass sie auf Beweisen und Logik basiert. Dass das IPCC keinerlei Beweise oder Logik präsentiert, die seine Hypothese untermauern, ist eine ernste Verletzung grundlegender wissenschaftlicher Prinzipien.

Mehr noch, Standardchecks zeigen, dass die globale Temperaturreihe nicht mit der Hypothese des IPCC konform geht; ein solcher Check wird in einer separaten Sektion unten beschrieben. Folglich basiert die Behauptung, dass die Zunahme der Temperatur signifikant ist – immerhin die grundlegende Schlussfolgerung eines zentralen Kapitels des IPCC-Berichtes – auf einer untragbaren Hypothese. Allgemeiner, Das IPCC ist damit gescheitert, zu zeigen, dass die globale Temperatur signifikant steigt! [Hervorhebung im Original]
Diese Probleme sind auch nicht nur auf das IPCC beschränkt. Das Climate Change Science Program (CCSP) der USA, welches den Kongress berät, veröffentlichte seinen Bericht über Temperaturänderungen im Jahre 2006. Dieser Bericht beruft sich auf die gleiche unmögliche Hypothese wie im Kapitel des IPCC-Berichtes.
Nichts hiervon ist Meinung. All dies sind nicht diskutierbare Tatsachen. Und es gilt für jede Erwärmung – ob nun verursacht von der Natur oder vom Menschen. Solange keine Forschungen durchgeführt werden, eine angemessene Hypothese zu finden, kann keine Schlussfolgerung über die Signifikanz von Temperaturänderungen gezogen werden.
Mr. Keenan führte früher mathematische Forschungen und solche über den Finanzhandel an der Wall Street und in London; seit 1995 forscht er unabhängig, Er unterstützt den Umweltschutz und die Energiesicherheit.

Eine unmögliche Hypothese


Abbildung 6: Intensität des Sonnenlichts (invers) und globale Eismenge.

Änderungen

Viele Jahrtausende lang waren die wichtigsten Fluktuationen im Klima der Erde durch die Eiszeiten bestimmt. Die Eiszeiten werden durch natürliche Variationen des Erdorbits um die Sonne hervorgerufen. Jene Variationen des Orbits verändern die Intensität des sommerlichen Sonnenlichts. Einige relevante Daten zeigt Abbildung 6: die schwarze Linie repräsentiert die Menge des globalen Eises, und die grüne Linie repräsentiert die Intensität des Sonnenlichts in der Nordhemisphäre (wo die Auswirkungen am größten sind). Man beachte, dass die Ähnlichkeit zwischen beiden Linien nur sehr schwach ist.

Abbildung 7: Intensität des Sonnenlichts (invers) und Veränderungen der globalen Eismenge
Warum ist die Ähnlichkeit so schwach? Um zu verstehen, was hier vor sich geht, müssen wir die Veränderungen der globalen Eismenge betrachten. Zum Beispiel, falls die Eismenge zu verschiedenen Zeiten 17, 15, 14, 19, … beträgt, und wenn man davon die jeweils folgenden Mengen subtrahiert; 2, 1, -5, … Die schwarze Linie in Abbildung 7 zeigt die Veränderungen der Eismenge, während die grüne Linie wie zuvor die Intensität des sommerlichen Sonnenlichts zeigt. Jetzt ist die Ähnlichkeit beider Linien groß. Dies ist ein ausgezeichneter Beweis dafür, dass die Eiszeiten durch orbitale Variationen verursacht wurden (dafür gibt es auch noch andere Beweise).
Ein Zusammenhang zwischen Eiszeiten und orbitalen Variationen wurde erstmals 1920 ins Spiel gebracht, und zwar durch den serbischen Astrophysiker Milutin Milankovitch. Um diesen Vorschlag zu untersuchen, sind Daten über die Eismenge in vergangenen Millenien unabdingbar; diese Daten wurden 1976 verfügbar. Und doch dauerte es bis zum Jahr 2006, bis Wissenschaftler die Veränderungen der Eismenge betrachteten. Mit anderen Worten, die Wissenschaftler brauchten 30 Jahre Denkzeit, um die erforderliche Subtraktion durchzuführen, um die schwarze Linie in Abbildung 7 zu erhalten. Während dieser drei Dekaden analysierten die Wissenschaftler den Vorschlag von Milankovitch auf der Basis von Kurven wie in Abbildung 6, und sie überdachten eine Palette von Gedanken, um zu versuchen, die schwach ausgeprägte Similarität zwischen den beiden Linien zu erklären.

Alternative Hypothesen

Dieses Vorgehen warf eine Frage auf: In Bezug auf die globale Temperatur, was passiert, wenn wir die Änderungen analysieren anstatt die Temperaturen selbst? Es stellt sich heraus, dass es dann eine offensichtliche Alternative zu den Hypothesen des IPCC gibt. Wie gut ist diese neue Hypothese im Vergleich zu der des IPCC? Eine allgemein übliche Methode, Hypothesen zu vergleichen, ist die Durchführung eines Verfahrens, das die Statistiker „AICc“ nennen (Akaike Information Criterion with correction). Diese Methode zeigt, dass die Alternative so viel besser ist als die des IPCC, dass wir daraus folgern, dass die Hypothese des IPCC untragbar ist. Das heißt, das IPCC machte den gleichen Fehler wie diejenigen Wissenschaftler, die 30 Jahre lang versuchten, den Vorschlag von Milankovitch zu verifizieren: Sie betrachteten nicht die Veränderungen in einer Reihe.
Mit der alternativen Hypothese ist die Zunahme der globalen Temperatur nicht signifikant. Wir wissen jedoch nicht, ob die alternative Hypothese selbst vernünftig ist – vielleicht gibt es noch bessere Hypothesen. Die Abschätzung, wie viel Gültigkeit die alternative Hypothese hat, sind Studien vonnöten. Es gab Studien, die alternative Hypothesen untersuchten und damit unterschiedliche Schlussfolgerungen über die Daten zogen. Der IPCC-Bericht erwähnt solche Studien, jedoch ohne anzuerkennen, dass die Stichhaltigkeit auf der Auswahl der Hypothese beruht – oder dass die Auswahl schwierige Forschungen erforderlich macht.
Link: http://www.informath.org/media/a42.htm

Anmerkungen

Was das IPCC-Kapitel über die globale Temperaturzunahme sagt
Der Zustandsbericht des IPCC aus dem Jahr 2007 enthält ein Kapitel mit der Überschrift: “Observations: surface and atmospheric climate change” [etwa: Oberfläche und atmosphärische Klimaänderung] (darin bezieht sich „Oberfläche“ auf die Erdoberfläche, d. h. wo Menschen wohnen). Dieses Kapitel präsentiert die globalen Temperaturmessungen, dargestellt in Abbildung 1. Die Hauptschlussfolgerung dieses Kapitels steht gleich fett gedruckt im ersten Satz. Sie lautet: „die globale mittlere Temperatur an der Erdoberfläche ist um 0,74°C ± 0,18°C gestiegen, wenn man sie mit einem linearen Trend über die letzten 100 Jahre abschätzt (1906 bis 2005)“. (Hier bedeutet “0.74°C ± 0.18°C”, dass das IPCC zu 90% sicher ist, dass der Temperaturanstieg in einem Bereich zwischen 0,56°C und 0,92°C pro Jahrhundert liegt). Ein Trend, der mit so großer Sicherheit so hoch über der Nulllinie liegt, ist extrem signifikant.

Eine NON- AR1– Hypothese  die im IPCC-Kapitel verworfen wird

Im Jahre 2005 haben zwei Wissenschaftler im U.S. Geological Survey, T. A. Cohn und H. F. Lins einen Forschungsartikel veröffentlicht, der eine andere Hypothese als die AR1-Hypothese untersuchte. Dem Artikel zufolge lässt sich sagen, falls diese andere Hypothese gültig ist, ist die Zunahme der globalen Temperatur nicht signifikant. Der Artikel von Cohn & Lins wird im IPCC-Kapitel erwähnt, aber nur in einem einzigen Absatz in einem Anhang (§3.A). In dem Absatz wird anerkannt, dass „die statistische Signifikanz der … Trends des AR1 überschätzt worden sein könnten“. Dann wird behauptet, dass andere Hypothesen als die mit AR1 berechneten nicht übernommen werden sollten, weil „die Ergebnisse von den benutzten (Hypothesen) abhängen, und komplexere (Hypothesen)  nicht so transparent sind, und es mangelt ihnen oft an physikalischem Realismus“. Der erste Teil, dass die Ergebnisse von den gewählten Hypothesen abhängen, ist korrekt, aber offensichtlich kein Grund, sich auf AR1 zu verlassen. Der zweite Teil hinsichtlich komplexerer Hypothesen könnte in einigen Fällen zutreffen (abhängig davon, welche Hypothese man verwendet). Der dritte Teil hinsichtlich der physikalischen Realität ist eine wichtige Sache. Eine Hypothese ist physikalisch realistisch, wenn sie mit unserem Verständnis über das Wirken physikalischer Vorgänge übereinstimmt. Hier folgt ein Beispiel einer unrealistischen Hypothese: nämlich die Hypothese, dass sich eine geworfene Münze immer auf und ab in einer perfekten geraden Linie durch die Luft bewegt. Der IPCC-Bericht stellt keine Betrachtung darüber an, ob seine Hypothese physikalisch realistisch ist: dies ist ein Manko des Berichtes. Die Angelegenheit wurde jedoch in einem Forschungspapier 2008 mit den Mitautoren G. A. Schmidt (NASA-Klimatologe) und dem führenden Alarmisten M. E. Mann betrachtet (beide Hauptbefürworter der globalen Erwärmung). In dem Papier finden sich starke Argumente, dass das AR1 physikalisch unrealistisch ist und dass irgendeine andere Hypothese verwendet werden muss. Dies bedeutet, dass die Behauptung des IPCC im Anhang, andere auf  physikalischem Realismus beruhende Hypothesen zu vermeiden, schwer in die Irre führt.
Ob die Hypothese von Cohn & Lins angemessen ist, ist unbekannt (obwohl sie 2007 einige Unterstützung von Koutsoyiannis & Montanan erhalten hat). Das IPCc nennt jedoch höchst dubiose Gründe dafür, jene Hypothese zurückzuweisen.

Andere Hypothesen, die im IPCC-Bericht erwähnt werden

Einige andere Hypothesen als die in AR1 werden kurz in einem späteren Kapitel des IPCC-Berichtes erwähnt, in §9.4.1. Die entscheidende Frage jedoch – welche Hypothese man auch immer verwendet, sie muss gerechtfertigt sein – wird nicht angesprochen. Dass die Signifikanz mit einigen Hypothesen verschwinden kann, wird nicht angedeutet.

Was das Wissenschaftsprogramm der Klimaänderung (CCSP) zur Hypothese im AR1 sagt

Der CCSP-Bericht behauptet, dass AR1 „eine Hypothese enthält, die eine gute Näherung für die meisten Klimadaten darstellt”. Die Behauptung wird ohne jeden Beweis, Argumentation oder Verweise auf andere Arbeiten erhoben. Tatsächlich werden Methoden, die Behauptung zu testen – und welche beweisen, dass die Behauptung falsch ist – schon in Einführungskursen über Zeitreihen gelehrt: siehe die Bibliographie.
[Die folgenden Details stellen eine technische Beschreibung dar und werden daher nicht mit übersetzt. Im Original sind dazu auch zahlreiche Links anzuklicken. A. d. Übers.]
Douglas J. Keenan
Keenan betrieb früher mathematische Forschung für den Finanzmarkt an der Wallstreet und in der City of London. Seit 1995 arbeitet er unabhängig. Er unterstützt Umweltbwegungen und Energiesicherheit
Übersetzt von Chris Frey für EIKE
Link: http://www.informath.org/media/a41/b8.pdf
Einige statistische Details (nicht übersetzt)
The annual global temperature data was downloaded via http://data.giss.nasa.gov/gistemp/ on 2010-11-17. The available data was for years 1881–2009. It is given as differences from the mean, in hundredths °C. (The mean used in Figure 1 is from NASA’s Earth Fact Sheet; the accuracy of that mean is irrelevant for the analysis herein.)
The IPCC and the CCSP use slightly different methods to fit a straight line to the temperature data. The CCSP uses ordinary least squares, and then finds approximate confidence intervals assuming that the residuals conform to AR(1). The IPCC uses generalized least squares and REML, assuming AR(1). The difference between the two methods is negligible; using ML instead of REML also makes negligible difference: see the R session below.

Herein, the IPCC/CCSP model is compared, via AICc, to a driftless ARIMA(3,1,0) model.
> # Assign the annual global temperature data (source: NASA)
> gistemp<- ts(c(-21, -26, -27, -32, -32, -29, -36, -27, -17, –
39, -28, -32, -33, -33, -25, -14, -11, -26, -16, -8, -15, -25, –
30, -35, -24, -19, -39, -33, -35, -33, -34, -32, -30, -15, -10, –
30, -39, -33, -20, -19, -15, -26, -22, -22, -17, -2, -15, -13, –
26, -8, -2, -8, -19, -7, -12, -5, 7, 10, 1, 4, 10, 3, 9, 19, 6, –
5, 0, -4, -7, -16, -4, 3, 11, -10, -10, -17, 8, 8, 6, -1, 7, 4,
8, -21, -11, -3, -1, -4, 8, 3, -10, 0, 14, -8, -5, -16, 12, 1, 8,
19, 26, 4, 25, 9, 4, 12, 27, 31, 19, 36, 35, 13, 13, 23, 37, 29,
39, 56, 32, 33, 47, 56, 55, 48, 63, 55, 58, 44, 57), start=1881)
> # Show that the three methods give essentially the same result
> library(nlme) # nlme contains gls
> ols<- lm(gistemp ~ time(gistemp)); coefficients(ols)
(Intercept) time(gistemp)
-1134.0286319 0.5820159
> gls.REML<- gls(gistemp ~ time(gistemp), cor=corARMA(p=1,q=0), method="REML"); coefficients(gls.REML)
(Intercept) time(gistemp)
-1137.7531478 0.5842142
> gls.ML<- gls(gistemp ~ time(gistemp), cor=corARMA(p=1,q=0),
method="ML"); coefficients(gls.ML)
(Intercept) time(gistemp)
-1137.362997 0.583983
> phi<- coefficients(arima(resid(ols), order=c(1,0,0),
include.mean=FALSE))[1] # for the CCSP confint approximation
> ci.ccsp<- coefficients(ols)[2] + sqrt((1+phi)/(1-phi))*
(coefficients(ols)[2] – confint(ols)[c(4,2)])
> ci.ccsp; confint(gls.REML)[c(2,4)]; confint(gls.ML)[c(2,4)]
[1] 0.4612661 0.7027656
[1] 0.4596008 0.7088276
[1] 0.4677889 0.7001771
> # Check AICc of IPCC/CCSP model and driftless ARIMA(3,1,0)
> calcAICc<- function(aicx,n,k) aicx+(2*k*(k+1))/(n-(k+1))
> arima310z<- arima(gistemp, order=c(3,1,0)) # uses drift zero
> calcAICc(AIC(gls.ML), length(gistemp), 1+0+3)
[1] 964.7413
> calcAICc(AIC(arima310z), length(gistemp), 3+0+1)
[1] 951.0372
> exp((951.0372-964.7413)/2)
[1] 0.001057286

Bibliography [annotated]
Burnham K.P., Anderson D.R. (2002), Model Selection and Multimodel Inference (Springer). [The standard reference for AIC (Akaike Information Criterion) and similar; strongly recommends AICc; §2.6 and §8.6 discuss how to interpret differences in AICc values.]
Cohn T.A., Lins H.F. (2005), “Nature’s style: naturally trendy”, Geophysical Research Letters, 32, L23402; doi:10.1029/2005GL024476. [Dismissed by Trenberth et al.]
Cowpertwait P.S.P., Metcalfe A.V. (2009), Introductory Time Series with R (Springer). [Presents what its title says; §4.6.3 gives argumentation for using AR4 without a trend for global temperature measurements; see also Shumway & Stoffer.]
Foster G., Annan J.D., Schmidt G.A., Mann M.E. (2008), “Comment on "Heat capacity, time constant, and sensitivity of Earth’s climate system" by S. E. Schwartz”, Journal of Geophysical Research, 113, D15102; doi:10.1029/2007JD009373. [A research paper by some leading global-warming scientists, arguing against AR1 for global temperatures.]
Koutsoyiannis D., Montanari A. (2007), “Statistical analysis of hydroclimatic time series”, Water Resources Research, 43, W05429, doi:10.1029/2006WR005592. [One of the few research articles that discusses non-AR assumptions (see also Cohn & Lins).]
NASA (2010), GISS Surface Temperature Analysis, http://data.giss.nasa.gov/gistemp/. [Has the annual global temperature measurements used herein: see section “Statistical details”.]
R Development Core Team (2010), R: A Language and Environment for Statistical Computing (Vienna: R Foundation for Statistical Computing). [R is standard statistical software, used in the section “Statistical details”; it is free, via www.R-project.org.]
Roe G. (2006), “In defense of Milankovitch”, Geophysical Research Letters, 33, L24703; doi:10.1029/2006GL027817. [The first research paper to present a proper elucidation of the link between ice ages and orbital cycles; source of Figures 6 and 7.]
Shumway R.H., Stoffer D.S. (2011), Time Series and Its Applications—With R Examples (Springer). [An introductory text, more advanced than that of Cowpertwait & Metcalfe; Example 2.5 argues that it is better to consider changes in global temperatures than to use a linear trend; set problems 3.33 and 5.3 elaborate on that.]
Trenberth K.E., Jones P.D., Ambenje P., Bojariu R., Easterling D., Klein Tank A., Parker D., Rahimzadeh F., Renwick J.A., Rusticucci M., Soden B., Zhai P. (2007), “Observations: surface and atmospheric climate change”, Climate Change 2007: The Physical ScienceBasis (editors—Solomon)
S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L.) Chapter 3 (Cambridge University Press). [The chapter of the Fourth Assessment Report by the IPCC that treats surface climate; this is the chapter that is the source for the IPCC (2007) claim that global temperatures are increasing at 0.74°C ± 0.18°C per century; Appendix A describes statistical methods.]
Wigley T.M.L. (2006), “Statistical issues regarding trends”, Temperature Trends in the Lower Atmosphere (editors—Karl T.R., Hassol S.J., Miller C.D., Murray W.L.) Appendix A (Washington D.C.: U.S. Climate Change Science Program). [Describes the statistical method used for the CCSP trend analysis.]
Acknowledgements
For discussions on drafts, I thank David R. Anderson, David L. Banks, David Henderson,
Olavi Kärner, Demetris Koutsoyiannis, Richard S. Lindzen, A.W. Montford, and Gerard Roe.
Douglas J. Keenan




Energiewende, Teil 1: Die künstliche Stromverteuerung

Eine späte und wohl zu späte Warnung

Bisher allerdings ist EU-Energiekommissar Günther Oettinger mit solcher Warnung alles andere als aufgefallen. Immerhin, auch späte Einsicht in bislang unterdrückte oder ungern wahrgenommene Tatsachen schändet nicht. Wenn jetzt also von amtlicher Seite endlich ebenfalls vor gewaltiger Stromverteuerung gewarnt wird, dann ist das drohende Unheil erst recht ernst- und die Warnung vor ihm als umso dringlicher wahrzunehmen. Freilich kommt sie spät, wohl auch schon zu spät, denn die besagte Wende ist in Deutschland politisch längst beschlossene Sache, nicht erst nur geplant. Und auf den CO2-Wahn und den Unsinn „Klimaschutz“ sind auch viele andere Länder abgefahren.

Ein mächtiges Interessenkartell

Zu denen, die vor drastisch steigenden Strompreisen und damit den schweren Folgen der unverantwortlichen Energiepolitik der scheinbar Öko-Bewegten schon immer warnen, gehört auch die Aktionsgruppe fachkundiger Bürger, die sich Nationale Anti-EEG-Bewegung (Naeb) nennt (www.naeb.info). Ihrem Vorstand gehöre auch ich an. Die Naeb wendet sich gegen die Subventionierung von Strom aus Windkraft- und Photovoltaik-Anlagen, wie sie im Erneuerbare-Energien-Gesetz (EEG) verankert ist und dadurch für die Hersteller und Betreiber solcher Anlagen wie eine Gelddruckmaschine wirkt. Profiteure sind ferner die Banken, die diese Investitionen finanzieren, und der Staat mit seinen Politikern, die sich in zusätzlichen Steuereinnahmen sonnen. Gegen dieses mächtige Interessenkartell kommen wir nur an, wenn sich immer mehr Bürger gegen diese künstliche Stromverteuerung auflehnen und bei der Naeb mitmachen.

Eine zweimalige Verdoppelung des deutschen Strompreises

Seit dem Jahr 2000 haben sich die Strompreise in Deutschland für private Endverbraucher von 11 auf über 23 Cent je Kilowattstunde (kWh) mehr als verdoppelt. Der von der Bundesregierung beschlossene Ausbau der „erneuerbaren Energien“ bis zum Jahr 2020 wird den Strompreis auf über 50 Cent hochtreiben, also zu einer mehr als weiteren Verdopplung führen. Das ist auch das, was Kommissar Oettinger meint. Denn Bundeskanzlerin Angela Merkel und ihre Regierung haben beschlossen, die Versorgung mit sogenannter erneuerbarer Energie noch schneller auszuweiten und noch stärker mit Subventionierung zu füttern, um die Kernkraftwerke ganz aufgeben zu können. Bis 2020 sollen 40 Prozent unseres Stromes aus „erneuerbaren“ (korrekt: dauerhaften) Quellen kommen. In weiteren Zwischenschritten ist vorgesehen, den Anteil bis 2050 auf 80 Prozent zu erhöhen, denn auch Strom mittels Kohle und Gas soll es letztlich nicht mehr geben.

Sehr viele werden ihre Stromrechnung nicht mehr bezahlen können

Davor, was dies für unser Land und die Menschen hier bedeutet, haben wir auch in unserer jüngsten Naeb-Mitteilung gewarnt: Der Strompreis wird bis 2020 für die privaten Endverbraucher von heute rund 24 Cent auf über 50 Cent je kwh steigen. Und der Strompreis für die Industrie klettert von heute etwa 12 auf deutlich über 20 Cent. Nicht eingerechnet ist ein schnelles Abschalten der Kernkraftwerke, was einen weiteren Kostenschub bringen wird. Die absehbare Folge: Millionen Haushalte (Hartz-4-Empfänger, Normalrentner und Geringverdiener) werden ihre Stromrechnung nicht mehr bezahlen können. Millionen von Arbeitsplätzen in der energieintensiven Industrie werden in Länder mit geringeren Energiekosten verlegt, die den deutschen Sonderweg, aus der Kernkraft auszusteigen, nicht mitgehen. Der noch schnellere deutsche Ausstieg aus der Kernenergie, als im Energiekonzept vom 28. September 2010 geplant, wird den Strompreisanstieg in Deutschland beschleunigen und eine bedarfsgerechte Stromversorgung nicht mehr sichern.

Warum das so kommt

Womit belegen wir das? Die Vergütung des „Ökostromes“ nach dem EEG beträgt für das Jahr 2010 durchschnittlich 15,5 Cent je kwh (Erfahrungsbericht des Bundesumweltministeriums vom 3. Mai 2011). Dies ist das Vierfache der Herstellkosten der konventionellen Stromerzeugung von rund 4 Cent je kwh. Durch die geplante massive und gigantische Ausweitung der Windkraftanlagen in Nord- und Ostsee (offshore-Windstrom) und Photovoltaik muss der Preis des Ökostroms zwangsläufig weiter stark steigen, denn dieser „Windstrom“ ist noch teurer als der an Land (onshore). In absoluten Zahlen bedeutet dies, dass die Öko-Abgabe von rund 13 Milliarden 2010 auf über 30 Milliarden Euro 2020 hochgetrieben wird. Diese Abgabe müssen vorwiegend die privaten Haushalte zahlen, weil die Industrie teilweise von ihr ausgenommen ist.

Zusatzbelastung für Privathaushalte 1000 Euro im Jahr

Damit kommt auf die Haushalte eine Zusatzbelastung von rund 1000 Euro im Jahr zu. Zu einem Drittel findet sie sich auf ihrer Stromrechnung wieder. Die anderen zwei Drittel schlagen sich in der Verteuerung aller Produkte und Dienstleistungen nieder, weil auch sie auf Strom angewiesen sind. Hinzu kommen noch die heute nur ansatzweise geschätzten 40 Milliarden Euro für Investitionen in neue Stromnetze, die ausschließlich wegen des „Ökostroms“ notwendig werden. Überlandleitungen haben einen Stromverlust von 1 bis 2 Prozent je 100 Kilometer. Das treibt den der Strompreis ebenfalls hoch. Außerdem verunstalten sie die Landschaft noch zusätzlich.

Wie Autofahren mit Kabrio und Limousine gleichzeitig

Für eine sichere Energieversorgung müssen konventionelle Kraftwerke mit der gleichen Leistung wie die Ökoanlagen immer bereit stehen, um einzuspringen, wenn der Wind ausfällt oder die Sonne nicht scheint. Durch den steigenden Ökostromanteil wird weniger preiswerter konventioneller Strom produziert, aber bei konstanten Festkosten. Somit steigt auch der Preis für Strom, der aus diesen „Schattenkraftwerken“ kommt. Wir leisten uns also eine doppelte Infrastruktur für die Stromerzeugung und –verteilung, die unser Land an den Abgrund bringen wird. Das ist so, als würde man bei schönem Wetter eine Fahrt mit einem Kabriolett antreten, aber eine Limousine mit Fahrer folgen lassen, damit man bei einem Wetterumschwung ohne Probleme sofort weiter fahren kann. Ganz schöner Unsinn, nicht wahr?

Oettinger: Grund für eine schleichende Deindustrialisierung

Aber mit der „Öko-Energie“ leisten wir uns so einen Luxus, obwohl wir ihn uns nicht leisten können und dürfen. "Der Strompreis,“ so hat Kommissar Oettinger seine Warnung noch ergänzt, „kann ein Grund für eine schleichende Deindustrialisierung sein.“ Der Strompreis sei in Deutschland politisch bestimmt. Dabei verwies er unter anderem auf die Konzessionsgebühren und die EEG-Abgaben. Recht hat er. Aber noch im Januar hat er eine europaweite Einspeisevergütung nach dem Muster des unsozialen deutschen EEG vorgeschlagen; das sei auch ein sinnvolles Instrument, um das Sahara-Solarstrom-Projekt Desertec voranzubringen. Nein, beides ist eine irrige Idee. Wieder einmal soll die Welt am deutschen Wesen genesen.

Bitte mal durchzählen

Sind Sie sich darüber im Klaren, dass die privaten Haushalte 50 bis 60 Elektrogeräte haben und dafür eine stets verfügbare Stromversorgung brauchen? Sie glauben das nicht? Dann zählen Sie bei sich zuhause doch mal durch. Ich selbst habe mich auch gewundert, was da alles zusammenkommt. Und glauben Sie, dass diese Haushalte aus purer Begeisterung für „erneuerbaren“ Strom und für vorgebliche CO2-Einsparung zwecks behaupteten „Klimaschutzes“ Stromausfälle hinnehmen und der politischen Führung dafür dankbaren Beifall spenden? Schwer vorstellbar.

Die EEG-Subventionen abschaffen

Schuld an dieser Entwicklung ist maßgeblich das „Erneuerbare Energien-Gesetz“ (EEG). Es schreibt Einspeisevergütungen für Wind-, Solar- und Biostrom vor, die deutlich über den Börsenpreisen für Strom liegen. Dieses Gesetz entspringt dem Denken in Kategorien einer staatlichen Zentralverwaltungswirtschaft. In die freie und soziale Marktwirtschaft, in der sich Preise nach Angebot und Nachfrage bilden, passt das Gesetz nicht hinein, es ist ein Fremdkörper. In einer solchen Marktwirtschaft müsste die Stromerzeugung aus „erneuerbaren Energien“ erst noch wesentlich weiter entwickelt und verbilligt werden, um wettbewerbsfähig zu sein. Dies wird durch die überhöhten und für den Betreiber überaus profitablen Einspeisevergütungen, die das EEG für zwanzig Jahre lang garantiert, verhindert. Wir als Naeb fordern daher, diese EEG-Subventionen abzuschaffen. Fordern Sie mit.
Und bitte merken: Der Grund für die drastische Verteuerung des Stroms ist nicht das Abschaltung der Kernkraftwerke, sondern der gewaltige Ausbau der Stromerzeugung durch Wind- und Solarkraft. Aber Politiker, andere Profiteure sowie willfährige Medien versuchen diesen Eindruck zu erwecken. Sie unterdrücken die Tatsachen oder reden sie klein. Lassen Sie sich nichts vormachen.
Autor Dr. Hans-Peter Krause 31. Mai 2011
zuerst erschienen bei eigentümlich frei 




Das Aus für das Kyoto-Protokoll. Vier Nationen gehen von der Fahne!

Die Zukunft des Kyoto-Protokolls ist zu einer zentralen Frage bei den Bemühungen geworden, Reduktionen von CO2-Emissionen unter der UNO-Rahmenkonvention zum Klimawandel (UN Framework Convention on Climate Change) zu verhandeln. Das diesjährige Treffen soll vom 29. 11. bis 9. 12. in Durban, Südafrika, stattfinden. 
Die Industriestaaten haben das Kyoto-Protokoll 1997 unterzeichnet. Sie haben sich zu legal bindenden Reduktionen der Treibhausgase verpflichtet, denen man den Klimawandel anlastet.
Diese Verpflichtungserklärungen laufen zum Ende des kommenden Jahres aus. Die Entwicklungsländer halten eine zweite Runde zur Sicherstellung der globalen Vereinbarungen für nötig.
Die die Regierungen von Russland, Japan und Kanada haben laut Aussagen von Diplomaten bestätigt, dass sie keiner neuen Kyoto-Vereinbarung beitreten würden.
Ihr Argument sei, dass die Kyoto-Vereinbarung die Entwicklungsländer zu keinem Reduzierungsziel verpflichte, einschließlich Chinas, des Landes mit dem weltgrößten CO2-Ausstoß.
Den Diplomaten zufolge hat auf dem kürzlichen G8-Dinner US-Präsident Barack Obama bestätigt, dass Washington keinem erneuerten Kyoto-Protokoll mehr beitreten würde.
Die USA, als Land mit dem zweitgrößten CO2-Ausstoß, hatten das Protokoll 1997 unterzeichnet. Aber im Jahre 2001 sagte der amtierende Präsident, George W. Bush, er würde es nicht dem Senat zur Ratifizierung vorlegen.
A. Watts: Den Originalartikel finden Sie hier




Indirekter solarer Antrieb des Klimas durch kosmische Strahlung: Eine Abschätzung aufgrund von Beobachtungen

Hintergrund
Die einzige Frage, die mir nach meinen Vorträgen am häufigsten gestellt wird, lautet: „Warum haben Sie nicht die Sonne erwähnt?“ Normalerweise antworte ich darauf, dass ich hinsichtlich der Theorie der „kosmischen Strahlungskanone“, die die Änderungen der Bewölkungsmenge und damit die Kontrolle des Klimas beeinflussen soll, skeptisch bin. Aber ich weise darauf hin, dass die Theorie von Svensmark, derzufolge natürliche Änderungen der Bewölkung Klimaänderungen hervorrufen können, ziemlich nahe dem steht, was ich predige – lediglich die Mechanismen, die zur Änderung der Bewölkung führen, sind andere.
Dann fand ich die Studie von Laken et al. vom vergangenen Jahr, die besonders interessant war, weil sie zeigte, dass Änderungen der Bewölkung aus Satellitenbeobachtungen Änderungen der Aktivität kosmischer Strahlung folgten. Obwohl die ISCCP-Satellitendaten nicht das Gelbe vom Ei sind, sich die Studie auf mittlere Breiten beschränkte, und sich der Zeitscale mehr nach Tagen als nach Jahren bewegte, ergaben sich doch überzeugende quantitative Beweise einer Auswirkung kosmischer Strahlung auf die Menge der Bewölkung.
Angesichts des raschen und stark anschwellenden Stromes von Veröffentlichungen und Studien zu diesem Thema beschloss ich, einen Schritt zurückzugehen und einige Zeit darauf zu verwenden, die am Boden registrierten kosmischen Strahlen (GCR) zu analysieren, um festzustellen, ob es einen Zusammenhang zwischen Änderungen der GCR und solchen des globalen Strahlungsenergiehaushaltes zwischen absorbierten Sonnenlicht und emittierter Infrarotstrahlung gibt. Diese Daten kamen von den NASA CERES-Messgeräten an Bord des TERRA-Satelliten zum Strahlungshaushalt, die seit März 2000 zur Verfügung stehen.
Alles in allem sind wir an der Beantwortung folgender Frage ultimativ interessiert: Wie beeinflussen verschiedene Antriebe den Strahlungsenergiehaushalt der Erde? Ich muss zugeben, die Ergebnisse reichen mir aus, um einen Fuß in das Lager der Theorie der kosmischen Strahlung zu setzen.
Die Daten
Das Gute an den Daten des Strahlungshaushaltes von dem CERES Earth-Satelliten ist, dass wir eine quantitative Abschätzung in Watt pro Quadratmeter für den Strahlungsantrieb infolge Änderungen der kosmischen Strahlung erhalten. Dies ist die Sprache der Klimamodellierer, da diese Strahlungsantriebe (von außen kommende Störungen des globalen Energiehaushaltes) benutzt werden können, um mit ihrer Hilfe globale Temperaturänderungen in Ozean und Atmosphäre aufgrund der einfachen Energieerhaltung berechnen zu können. Die Daten können außerdem verglichen werden mit den Abschätzungen zum Antrieb durch den zunehmenden CO2-Gehalt, gegenwärtig der am meisten in Mode gekommene Grund für die Klimaänderung.
Aus den Messungen des globalen Strahlungshaushaltes können wir auch ersehen, ob es eine Änderung sowohl der Menge hoher Wolken (gewonnen aus Messungen der emittierten Infrarotstrahlung) als auch der Menge tiefer Wolken (gewonnen aus Messungen der reflektierten kurzwelligen Strahlung {sichtbares Sonnenlicht}) im Zusammenhang mit der Aktivität kosmischer Strahlung gibt.
Ich werde nur die am Boden gemessenen Daten der kosmischen Strahlen aus Moskau verwenden, ist doch diese die erste von mir gefundene Station, die ein komplettes monatliches Archiv für die gleiche Zeitspanne enthält, in der wir auch Daten des Strahlungsenergiehaushaltes von CERES haben (März 2000 bis Juni 2010). Ich bin sicher, dass es auch andere Stationen gibt… all dies ist aber sowieso vorläufig. Mich durch die Myriaden von Datensätzen solarer bzw. irdischer Strahlung hindurch zu wühlen war für mich genauso verwirrend, wie es für die Meisten von Ihnen sein dürfte, sich durch die zahlreichen Klimadatensätze zu arbeiten, mit denen ich ziemlich vertraut bin.
Die Ergebnisse
Der folgende Plot (schwarze Kurve) zeigt die monatlichen GCR-Daten aus Moskau für diese Periode sowie die trendbereinigte Version mit einer (1+2+1):4 – Mittelung (rote Kurve), die ich auch auf die CERES-Messungen anwenden möchte, um das Rauschen zu reduzieren.

Die Trendfilterung der Daten isoliert die Variabilität von Monat zu Monat und Jahr zu Jahr als das passende Signal, da die Trends (oder deren Fehlen) im globalen Strahlungshaushalt durch eine Kombination vieler Dinge hervorgerufen worden sein kann. (Lineare Trends sind für statistische Grund- und Auswirkungs-Effekte wertlos; aber sehr nützlich, um Gemeinsamkeiten von Schwankungen in zwei Datensätzen herauszufiltern.)
Die monatlichen Messungen der kosmischen Strahlung aus Moskau werden verglichen mit den globalen monatlichen Anomalien der Strahlungsflussdaten von CERES des NASA Terra-Satelliten (SSF 2,5-Datensatz),
welche die Variationen des im globalen Mittel reflektierten Sonnenlichts (SW), die emittierte infrarote Strahlung (LW) und Net [?] zeigt (welches die geschätzten Ungleichgewichte der gesamten absorbierten Energie durch das Klimasystem ist, nach der Anpassung der Variationen der gesamten Solarstrahlung TSI). Man beachte, dass ich die Variationen im Negativen von Net geplottet habe, was angenähert gleich ist mit Variationen von (LW + SW).
Da die primäre Quelle der Variabilität der CERES-Daten mit der Aktivität von El Niño und La Niña (ENSO) zusammenhängt, habe ich danach den mittleren ENSO-Einfluss herausgefiltert, und zwar mit einer Regression des laufenden 5-Monats-Mittels des Multivariate ENSO-Index (MEI) und den Flüssen in CERES. [Original: I subtracted out an estimate of the average ENSO influence using running regressions between running 5-month averages of the Multivariate ENSO Index (MEI) and the CERES fluxes]. Ich habe den MEI-Index zusammen mit jenen Regressionskoeffizienten in jedem Monat verwendet, um die CERES-Flüsse 4 Monate später zu korrigieren, da diese Zeitverschiebung die stärkste Korrelation aufwies.
Schließlich führte ich Regressionen an verschiedenen zeitlichen Verschiebungen zwischen den GCR-Reihen, den LW, SW und Net-Strahlungsflüssen durch. Die Ergebnisse folgen hier:

Die jährlichen mittleren Zusammenhänge aus dem vorigen Plot kommen aus dieser Beziehung in den reflektierten solaren (SW) Daten,

während die Ergebnisse des Net-Flusses (Net = absorbierte Solarstrahlung minus emittierter Infrarotstrahlung, korrigiert mit der Änderung der Solarstrahlung während dieser Periode) folgendermaßen aussehen:

Es ist dieser letzte Plot, der uns die abschließende Abschätzung ermöglicht, wie eine Änderung des kosmischen Strahlungsflusses in Moskau mit Änderungen der globalen Strahlungsenergiebilanz zusammenhängt.
Zusammenfassung
Was die obigen drei Plots zeigen ist, dass eine Zunahme der GCR-Aktivität um 1000, wie in Moskau gemessen (was um Einiges unter der Zunahme zwischen solarem Maximum und solarem Minimum liegt), Folgendes bewirkt:
(1) Eine Zunahme des reflektierten Sonnenlichts (SW) von 0,64 Watt pro Quadratmeter, vermutlich hauptsächlich wegen der Zunahme tiefer Wolken;
(2) nahezu keine Änderung der emittierten infraroten Strahlung (LW) um + 0,02 Watt pro Quadratmeter;
(3) ein Net-Effekt (reflektiertes Sonnenlicht plus [minus?] emittiertes Infrarot) mit einem Verlust von Strahlungsenergie durch das globale Klimasystem um 0,55 Watt pro Quadratmeter.
Was bedeutet dies für die Klimaänderung?
Unter der Voraussetzung, dass diese Signaturen dicht an der Realität liegen, was bedeuten sie quantitativ hinsichtlich der potentiellen Auswirkung kosmischer Strahlung auf das Klima?
Nun, wie jeder andere Antrieb hängt eine sich daraus ergebende Temperaturänderung nicht nur von der Größenordnung des Antriebs ab, sondern auch von der Sensitivität des Klimasystems für diesen Antrieb. Aber wir KÖNNEN den Antrieb durch kosmische Strahlung mit ANDEREN „bekannten“ Antrieben vergleichen, die einen gewaltigen Einfluss auf unser Verständnis der Rolle der Menschen hinsichtlich der Klimaänderung haben.
Zum Beispiel: Falls die Erwärmung im vorigen Jahrhundert zu, sagen wir, 50% natürlichen und zu 50% anthropogenen Ursprungs ist, dann folgt daraus, dass das Klimasystem  nur halb so empfindlich auf unsere Treibhausgasemissionen reagiert (oder die Verschmutzung mit Aerosolen), als wenn die Erwärmung zu 100% anthropogen im Ursprung ist (was dem uns verkündeten „wissenschaftlichen Konsens“ schon sehr nahe kommt).
Erstens, vergleichen wir den Antrieb durch die Änderung der Solarstrahlung TSI im Zeitraum von 2000 bis 2010. Die orange Kurve im folgenden Plot stellt die Änderung des direkten Antriebs durch die TSI von 2000 bis 2010 dar, die ich mit Hilfe der analytischen Fähigkeiten von Danny Braswell aus den CERES Net, LW und SW-Daten herausfiltern konnte. Es ist die einzige Art solaren Antriebs, von der das IPCC (offenbar) glaubt, dass er existiert, und er ist ziemlich schwach:
Ebenso ist der geschätzte Antrieb durch kosmische Strahlung dargestellt, wie er aus Änderungen von Monat zu Monat des originalen Datensatzes der Moskauer Serie resultiert, berechnet durch Multiplikation dieser monatlichen Änderungen in Höhe von 0,55 Watt pro Quadratmeter pro 1000 Zählern der Änderung der kosmischen Strahlung.
Schließlich brachte ich die Trendlinien in Übereinstimmung, um eine Abschätzung der relativen Magnitude dieser beiden Antriebsquellen zu erhalten: Der (indirekte) Antrieb durch die kosmische Strahlung ist etwa 2,8 mal so groß wie der (direkte) Antrieb durch die Solarstrahlung. Dies bedeutet, dass der totale (direkte + indirekte) Antrieb des Klimas, assoziiert mit dem Solarzyklus 3,8 mal größer ist, als die meisten Mainstream-Klimawissenschaftler annehmen.
Eine offensichtliche Frage, die sich jetzt erhebt, ist die Frage, ob das Fehlen der Erwärmung seit etwa 2004 in den oberen 700 Metern der Ozeane auf den Einfluss der kosmischen Strahlung auf die Bewölkung zurückzuführen ist, die den Erwärmungseffekt zunehmenden Kohlendioxids überkompensiert.
Sollte die Lage wirklich so einfach sein (woran ich zweifle), würde das bedeuten, dass mit dem sich rasch nähernden solaren Maximum die Erwärmung während der nächsten Monate wieder einsetzen würde. Natürlich spielen noch andere natürliche Zyklen mit (mein Favorit ist die Pazifische Dekadische Oszillation), so dass die Vorhersage, was als Nächstes passieren wird, mehr eine Frage des Glaubens als der Wissenschaft ist.
Im größeren Zusammenhang ist dies wieder ein Beweisstück mehr dafür, dass die IPCC-Wissenschaftler untersuchen sollten, ob nicht Mutter Natur eine viel größere Rolle bei der Klimaänderung spielt als das IPCC zuzugeben bereit ist. Und ich empfehle noch einmal Folgendes zu untersuchen: je größer die Rolle der Natur als Ursache von Klimaänderungen in der Vergangenheit ist, umso kleiner muss der menschliche Einfluss gewesen sein, was in der Folge eine profunde Auswirkung auf künftige Projektionen von Klimaänderungen durch den anthropogenen Einfluss haben dürfte.
Link: http://www.drroyspencer.com/2011/05/indirect-solar-forcing-of-climate-by-galactic-cosmic-rays-an-observational-estimate/
Autor: May 19th, 2011 by Roy W. Spencer, Ph. D.

Übersetzt von Chris Frey für EIKE